scispace - formally typeset
Search or ask a question
Institution

University of Potsdam

EducationPotsdam, Germany
About: University of Potsdam is a education organization based out in Potsdam, Germany. It is known for research contribution in the topics: Population & Computer science. The organization has 9629 authors who have published 26740 publications receiving 759745 citations. The organization is also known as: Universität Potsdam.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared eight statistical downscaling methods (SDMs) often used in climate change impact studies, including change factors (CFs), three bias correction (BC) methods and one perfect prognosis method.
Abstract: . Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models, they cannot be directly used in hydrological models. Hence, statistical downscaling is necessary to address climate change impacts at the catchment scale. This study compares eight statistical downscaling methods (SDMs) often used in climate change impact studies. Four methods are based on change factors (CFs), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation in most catchments in both winter and summer. For individual catchments, the downscaled time series tend to agree on the direction of the change but differ in the magnitude. Differences between the SDMs vary between the catchments and depend on the season analysed. Similarly, general conclusions cannot be drawn regarding the differences between CFs and BC methods. The performance of the BC methods during the control period also depends on the catchment, but in most cases they represent an improvement compared to RCM outputs. Analysis of the variance in the ensemble of RCMs and SDMs indicates that at least 30% and up to approximately half of the total variance is derived from the SDMs. This study illustrates the large variability in the expected changes in extreme precipitation and highlights the need for considering an ensemble of both SDMs and climate models. Recommendations are provided for the selection of the most suitable SDMs to include in the analysis.

160 citations

Journal ArticleDOI
TL;DR: In this article, the authors present quantitative geomorphic data from the nonglaciated portion of the Susquehanna River drainage basin that provide insight into these end-member models.

160 citations

Journal ArticleDOI
TL;DR: The study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.
Abstract: The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

160 citations

Journal ArticleDOI
TL;DR: Partitioning of antioxidants, hydrogen bonding, interphase transport, surface accessibility, and interaction of emulsifier with antioxidants are considered to be important parameters that determine antioxidant activity in lipid-containing systems.
Abstract: The activity of alpha-tocopherol, Trolox, propyl gallate, gallic acid, methyl carnosoate, and carnosic acid was studied in two oil-in-water (o/w) emulsions, in two water-in-oil (w/o) emulsions, and in bulk oil with and without added emulsifiers. All antioxidants had either moderate or higher activity in bulk oil than in the emulsions. In most emulsions, the most polar antioxidants, propyl gallate and gallic acid, exhibited either prooxidant activity or no antioxidant activity. Methyl carnosoate was the most active antioxidant in w/o emulsions but was less active than Trolox in o/w emulsions. alpha-Tocopherol was less active in bulk oil than in emulsions, but its activity in bulk oil was markedly enhanced by the addition of o/w emulsifiers. Partitioning of antioxidants, hydrogen bonding, interphase transport, surface accessibility, and interaction of emulsifier with antioxidants are considered to be important parameters that determine antioxidant activity in lipid-containing systems.

160 citations

Journal ArticleDOI
TL;DR: It is suggested that the main features of the chemistry of sclerotization probably have been established, and that the major questions now remaining concern the precise regional and temporal control of the process.
Abstract: The insect cuticle is an extracellular structure covering the total outer surface of the animal and providing protection against harmful influences from the environment. The mechanical properties of cuticles may vary considerably, and pronounced regional differences are generally observed. The properties may also change during development, and it can be assumed that the physical and chemical properties of all cuticular regions tend to be close to the optimal for proper physiological function during all developmental stages. Cuticular regions can be stabilized by the process of sclerotization, whereby o-diphenols are oxidatively incorporated into the material. Our current knowledge of the sclerotization process is reviewed, and it is suggested that the main features of the chemistry of sclerotization probably have been established, and that the major questions now remaining concern the precise regional and temporal control of the process.

160 citations


Authors

Showing all 9969 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Markus Antonietti1761068127235
Marc Weber1672716153502
Peter Capak14767970483
Heiner Boeing140102492580
Alisdair R. Fernie133101064026
Klaus-Robert Müller12976479391
Claudia Felser113119858589
Guochun Zhao11340640886
Matthias Steinmetz11246167802
Jürgen Kurths105103862179
Peter Schmidt10563861822
Erwin P. Bottinger10234242089
Knud Jahnke9435231542
Gerd Gigerenzer9453352356
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023276
2022678
20212,368
20202,236
20192,008