scispace - formally typeset
Search or ask a question
Institution

University of Potsdam

EducationPotsdam, Germany
About: University of Potsdam is a education organization based out in Potsdam, Germany. It is known for research contribution in the topics: Population & Computer science. The organization has 9629 authors who have published 26740 publications receiving 759745 citations. The organization is also known as: Universität Potsdam.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present preliminary results from a deep observation lasting almost 200 ks of the center of the Perseus cluster of galaxies around NGC 1275, showing that the X-ray surface brightness of the intracluster gas beyond the inner 20 kpc, which contains the inner radio bubbles, is very smooth apart from some low-amplitude quasi-periodic ripples.
Abstract: We present preliminary results from a deep observation lasting almost 200 ks of the centre of the Perseus cluster of galaxies around NGC 1275. The X-ray surface brightness of the intracluster gas beyond the inner 20 kpc, which contains the inner radio bubbles, is very smooth apart from some low-amplitude quasi-periodic ripples. A clear density jump at a radius of 24 kpc to the north-east, about 10 kpc out from the bubble rim, appears to be due to a weak shock driven by the northern radio bubble. A similar front may exist around both inner bubbles but is masked elsewhere by rim emission from bright cooler gas. The continuous blowing of bubbles by the central radio source, leading to the propagation of weak shocks and viscously dissipating sound waves seen as the observed fronts and ripples, gives a rate of working which balances the radiative cooling within the inner 50 kpc of the cluster core.

636 citations

Journal ArticleDOI
TL;DR: The Plant Transcription Factor Database (PlnTFDB) is an integrative database that provides putatively complete sets of transcription factors and other transcriptional regulators in plant species whose genomes have been completely sequenced and annotated.
Abstract: The Plant Transcription Factor Database (PlnTFDB; http://plntfdb.bio.uni-potsdam.de/v3.0/) is an integrative database that provides putatively complete sets of transcription factors (TFs) and other transcriptional regulators (TRs) in plant species (sensu lato) whose genomes have been completely sequenced and annotated. The complete sets of 84 families of TFs and TRs from 19 species ranging from unicellular red and green algae to angiosperms are included in PlnTFDB, representing >1.6 billion years of evolution of gene regulatory networks. For each gene family, a basic description is provided that is complemented by literature references, and multiple sequence alignments of protein domains. TF or TR gene entries include information of expressed sequence tags, 3D protein structures of homologous proteins, domain architecture and cross-links to other computational resources online. Moreover, the different species in PlnTFDB are linked to each other by means of orthologous genes facilitating cross-species comparisons.

627 citations

Journal ArticleDOI
TL;DR: It is found that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle, and forests are expected to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks.
Abstract: Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.

625 citations

Journal ArticleDOI
TL;DR: It is shown that a suitably arranged interaction between these concepts can significantly boost BCI performances and derive information-theoretic predictions and demonstrate their relevance in experimental data.
Abstract: Noninvasive electroencephalogram (EEG) recordings provide for easy and safe access to human neocortical processes which can be exploited for a brain-computer interface (BCI). At present, however, the use of BCIs is severely limited by low bit-transfer rates. We systematically analyze and develop two recent concepts, both capable of enhancing the information gain from multichannel scalp EEG recordings: 1) the combination of classifiers, each specifically tailored for different physiological phenomena, e.g., slow cortical potential shifts, such as the premovement Bereitschaftspotential or differences in spatio-spectral distributions of brain activity (i.e., focal event-related desynchronizations) and 2) behavioral paradigms inducing the subjects to generate one out of several brain states (multiclass approach) which all bare a distinctive spatio-temporal signature well discriminable in the standard scalp EEG. We derive information-theoretic predictions and demonstrate their relevance in experimental data. We will show that a suitably arranged interaction between these concepts can significantly boost BCI performances.

614 citations

Journal ArticleDOI
TL;DR: Studying plasticity along the pathway from gene expression to the phenotype and its relationship with fitness will help to better understand why adaptive plasticity is not more universal, and to more realistically predict the evolution of plastic responses to environmental change.
Abstract: The high potential fitness benefit of phenotypic plasticity tempts us to expect phenotypic plasticity as a frequent adaptation to environmental heterogeneity. Examples of proven adaptive plasticity in plants, however, are scarce and most plastic responses actually may be 'passive' rather than adaptive. This suggests that frequently requirements for the evolution of adaptive plasticity are not met or that such evolution is impeded by constraints. Here we outline requirements and potential constraints for the evolution of adaptive phenotypic plasticity, identify open questions, and propose new research approaches. Important open questions concern the genetic background of plasticity, genetic variation in plasticity, selection for plasticity in natural habitats, and the nature and occurrence of costs and limits of plasticity. Especially promising tools to address these questions are selection gradient analysis, meta-analysis of studies on genotype-by-environment interactions, QTL analysis, cDNA-microarray scanning and quantitative PCR to quantify gene expression, and two-dimensional gel electrophoresis to quantify protein expression. Studying plasticity along the pathway from gene expression to the phenotype and its relationship with fitness will help us to better understand why adaptive plasticity is not more universal, and to more realistically predict the evolution of plastic responses to environmental change.

612 citations


Authors

Showing all 9969 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Markus Antonietti1761068127235
Marc Weber1672716153502
Peter Capak14767970483
Heiner Boeing140102492580
Alisdair R. Fernie133101064026
Klaus-Robert Müller12976479391
Claudia Felser113119858589
Guochun Zhao11340640886
Matthias Steinmetz11246167802
Jürgen Kurths105103862179
Peter Schmidt10563861822
Erwin P. Bottinger10234242089
Knud Jahnke9435231542
Gerd Gigerenzer9453352356
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023276
2022678
20212,368
20202,236
20192,008