scispace - formally typeset
Search or ask a question
Institution

University of Potsdam

EducationPotsdam, Germany
About: University of Potsdam is a education organization based out in Potsdam, Germany. It is known for research contribution in the topics: Population & Computer science. The organization has 9629 authors who have published 26740 publications receiving 759745 citations. The organization is also known as: Universität Potsdam.


Papers
More filters
Journal ArticleDOI
TL;DR: The Biodiversity Exploratories (www.biodiversityexploratories.de ) as mentioned in this paper is a large-scale and long-term project for functional biodiversity, which includes a hierarchical set of standardized field plots in three different regions of Germany covering manifold management types and intensities in grasslands and forests.

654 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on research practices but also offer guidelines for reviewers, editors, journal management, teachers, granting institutions, and university promotion committees, highlighting some of the emerging and existing practical solutions that can facilitate implementation of these recommendations.
Abstract: Replicability of findings is at the heart of any empirical science. The aim of this article is to move the current replicability debate in psychology towards concrete recommendations for improvement. We focus on research practices but also offer guidelines for reviewers, editors, journal management, teachers, granting institutions, and university promotion committees, highlighting some of the emerging and existing practical solutions that can facilitate implementation of these recommendations. The challenges for improving replicability in psychological science are systemic. Improvement can occur only if changes are made at many levels of practice, evaluation, and reward. Copyright © 2013 John Wiley & Sons, Ltd.

645 citations

Journal ArticleDOI
TL;DR: In this article, a planar pin-type perovskite solar cells with undoped organic charge transport layers with photoluminescence imaging was used to visualize all non-radiative recombination pathways.
Abstract: The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pin-type perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (VOC) of the complete cell to ~1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm2 perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high VOC (1.17 V) and record fill factor (>81%). Non-radiative recombination is a critical limiting factor for perovskite solar cell performance. Stolterfoht et al. visualize the various recombination pathways in planar pin cells with photoluminescence imaging and use it to design improved solar cells with 1 cm2 areas and ~20% efficiency.

644 citations

Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Using a newly developed data analysis technique, long periods of hidden cardiorespiratory synchronization are found, lasting up to 20 minutes, during spontaneous breathing at rest, in humans.
Abstract: It is widely accepted that cardiac and respiratory rhythms in humans are unsynchronised1. However, a newly developed data analysis technique allows any interaction that does occur in even weakly coupled complex systems to be observed. Using this technique, we found long periods of hidden cardiorespiratory synchronization, lasting up to 20 minutes, during spontaneous breathing at rest.

641 citations

Journal ArticleDOI
26 Jan 2006-Nature
TL;DR: The detection of a cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory, and is suggested to name OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.
Abstract: Over 170 extrasolar planets have so far been discovered, with a wide range of masses and orbital periods, but until last July no planet of Neptune's mass or less had been detected any more than 0.15 astronomical units (AU) from a normal star. (That's close — Earth is one AU from the Sun). On 11 July 2005 the OGLE Early Warning System recorded a notable event: gravitational lensing of light from a distant object by a foreground star revealed a small planet of about 5.5 Earth masses, orbiting at about 2.6 AU from the foreground star. This is the lowest known mass for an extrasolar planet orbiting a main sequence star, and its detection suggests that cool, sub-Neptune mass planets are more common than gas giants, as predicted by the favoured core accretion theory of planet formation. In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M⊕) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars1,2,3,4. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a M⊕ planetary companion at a separation of au from a M⊙ M-dwarf star, where M⊙ refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.

636 citations


Authors

Showing all 9969 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Markus Antonietti1761068127235
Marc Weber1672716153502
Peter Capak14767970483
Heiner Boeing140102492580
Alisdair R. Fernie133101064026
Klaus-Robert Müller12976479391
Claudia Felser113119858589
Guochun Zhao11340640886
Matthias Steinmetz11246167802
Jürgen Kurths105103862179
Peter Schmidt10563861822
Erwin P. Bottinger10234242089
Knud Jahnke9435231542
Gerd Gigerenzer9453352356
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023276
2022678
20212,368
20202,236
20192,008