scispace - formally typeset
Search or ask a question

Showing papers by "University of Potsdam published in 2022"


Journal ArticleDOI
01 Mar 2022
TL;DR: In this article , the authors provided a comprehensive spatio-temporal assessment of the drought hazard over Europe by benchmarking past exceptional events during the period from 1766 to 2020 and identified the 2018-2020 drought event as a new benchmark having an unprecedented intensity that persisted for more than 2 years, exhibiting a mean areal coverage of 35.6% and an average duration of 12.2 months.
Abstract: During the period 2018–2020, Europe experienced a series of hot and dry weather conditions with significant socioeconomic and environmental consequences. Yet, the extremity of these multi-year dry conditions is not recognized. Here, we provide a comprehensive spatio-temporal assessment of the drought hazard over Europe by benchmarking past exceptional events during the period from 1766 to 2020. We identified the 2018–2020 drought event as a new benchmark having an unprecedented intensity that persisted for more than 2 years, exhibiting a mean areal coverage of 35.6% and an average duration of 12.2 months. What makes this event truly exceptional compared with past events is its near-surface air temperature anomaly reaching +2.8 K, which constitutes a further evidence that the ongoing global warming is exacerbating present drought events. Furthermore, future events based on climate model simulations Coupled Model Intercomparison Project v5 suggest that Europe should be prepared for events of comparable intensity as the 2018–2020 event but with durations longer than any of those experienced in the last 250 years. Our study thus emphasizes the urgent need for adaption and mitigation strategies to cope with such multi-year drought events across Europe.

31 citations


Journal ArticleDOI
TL;DR: In this article, the authors applied the disturbance detection algorithm LandTrendr for automated large-scale RTS mapping and high-temporal thaw dynamic assessment to North Siberia (8.1 × 106km2).

29 citations


Journal ArticleDOI
15 Jan 2022-Energy
TL;DR: It is suggested that a better understanding of user needs and closer cooperation between modellers and users is imperative to truly improve models and unlock their full potential to support the transition towards climate neutrality in Europe.

26 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify human agency, social-institutional network structures, different spatial and temporal scales and increased complexity as key distinctive features underlying social tipping processes and propose a formal definition for social tipping process and filtering criteria for those processes that could be decisive for future trajectories towards climate action.

24 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used machine learning approaches to identify the prevailing climatic and soil hydrological drivers of spatial and temporal yield variability of four crops, comprising 40 years yield data each from 351 counties in Germany.

23 citations


Journal ArticleDOI
TL;DR: In this paper , a simple method is proposed to estimate the efficiency loss due to mobile ions via fast-hysteresis measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds ( ≈ 1000 V s−1).
Abstract: Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via “fast-hysteresis” measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds ( ≈ 1000 V s−1). The “ion-free” PCE is between 1% and 3% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds ( ≈ 100 mV s−1). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments.

20 citations


Journal ArticleDOI
TL;DR: Bogena et al. as discussed by the authors presented soil moisture data from 66 cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events.
Abstract: Abstract. Climate change increases the occurrence and severity of droughts due to increasing temperatures, altered circulation patterns, and reduced snow occurrence. While Europe has suffered from drought events in the last decade unlike ever seen since the beginning of weather recordings, harmonized long-term datasets across the continent are needed to monitor change and support predictions. Here we present soil moisture data from 66 cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events. The CRNS sites are distributed across Europe and cover all major land use types and climate zones in Europe. The raw neutron count data from the CRNS stations were provided by 24 research institutions and processed using state-of-the-art methods. The harmonized processing included correction of the raw neutron counts and a harmonized methodology for the conversion into soil moisture based on available in situ information. In addition, the uncertainty estimate is provided with the dataset, information that is particularly useful for remote sensing and modeling applications. This paper presents the current spatiotemporal coverage of CRNS stations in Europe and describes the protocols for data processing from raw measurements to consistent soil moisture products. The data of the presented COSMOS-Europe network open up a manifold of potential applications for environmental research, such as remote sensing data validation, trend analysis, or model assimilation. The dataset could be of particular importance for the analysis of extreme climatic events at the continental scale. Due its timely relevance in the scope of climate change in the recent years, we demonstrate this potential application with a brief analysis on the spatiotemporal soil moisture variability. The dataset, entitled “Dataset of COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors”, is shared via Forschungszentrum Jülich: https://doi.org/10.34731/x9s3-kr48 (Bogena and Ney, 2021).

19 citations


Journal ArticleDOI
TL;DR: In this article, the capability of deep learning, especially, for an operational wind speed data derivation from the measured Delay-Doppler Maps (DDMs) is characterized, and the best architecture is determined on a validation set and is evaluated over a completely blind dataset from a different time span than that of the training data to validate the generality of the model for operational usage.

13 citations


Journal ArticleDOI
Georg Veh1
01 Mar 2022
TL;DR: For example, this paper found that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting).
Abstract: Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.

13 citations


Journal ArticleDOI
TL;DR: In this article , the boundary conditions of the 14-15 July 2021 Eifel region in western Germany and Belgium were reviewed and the emerging features that made this event different from previous floods.
Abstract: Abstract. Rapidly evolving floods are rare but powerful drivers of landscape reorganisation that have severe and long-lasting impacts on both the functions of a landscape’s subsystems and the affected society. The July 2021 flood that particularly hit several river catchments of the Eifel region in western Germany and Belgium was a drastic example. While media and scientists highlighted the meteorological and hydrological aspects of this flood, it was not just the rising water levels in the main valleys that posed a hazard, caused damage, and drove environmental reorganisation. Instead, the concurrent coupling of landscape elements and the wood, sediment, and debris carried by the fast-flowing water made this flood so devastating and difficult to predict. Because more intense floods are able to interact with more landscape components, they at times reveal rare non-linear feedbacks, which may be hidden during smaller events due to their high thresholds of initiation. Here, we briefly review the boundary conditions of the 14–15 July 2021 flood and discuss the emerging features that made this event different from previous floods. We identify hillslope processes, aspects of debris mobilisation, the legacy of sustained human land use, and emerging process connections and feedbacks as critical non-hydrological dimensions of the flood. With this landscape scale perspective, we develop requirements for improved future event anticipation, mitigation, and fundamental system understanding.

12 citations


Journal ArticleDOI
TL;DR: In this article , the authors implemented a concept for automatic, comprehensive characterization of the disseminated bone marrow (BM) involvement in multiple myeloma (MM) by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS).
Abstract: Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS).This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations.The "multilabel nnU-Net" segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3-8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3-8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively).This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.

Journal ArticleDOI
TL;DR: In this paper , heat-inducible dCas9 was used to target a JMJ histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest.
Abstract: Histone modifications play a crucial role in the integration of environmental signals to mediate gene expression outcomes. However, genetic and pharmacological interference often causes pleiotropic effects, creating the urgent need for methods that allow locus-specific manipulation of histone modifications, preferably in an inducible manner. Here, we report an inducible system for epigenome editing in Arabidopsis (Arabidopsis thaliana) using a heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest. As a model locus, we target the ASCORBATE PEROXIDASE2 (APX2) gene that shows transcriptional memory after heat stress (HS), correlating with H3K4 hyper-methylation. We show that dCas9-JMJ is targeted in a HS-dependent manner to APX2 and that the HS-induced overaccumulation of H3K4 trimethylation (H3K4me3) decreases when dCas9-JMJ binds to the locus. This results in reduced HS-mediated transcriptional memory at the APX2 locus. Targeting an enzymatically inactive JMJ protein in an analogous manner affected transcriptional memory less than the active JMJ protein; however, we still observed a decrease in H3K4 methylation levels. Thus, the inducible targeting of dCas9-JMJ to APX2 was effective in reducing H3K4 methylation levels. As the effect was not fully dependent on enzyme activity of the eraser domain, the dCas9-JMJ fusion protein may act in part independently of its demethylase activity. This underlines the need for caution in the design and interpretation of epigenome editing studies. We expect our versatile inducible epigenome editing system to be especially useful for studying temporal dynamics of chromatin modifications.


Journal ArticleDOI
01 Jan 2022-Carbon
TL;DR: In this article, the porosity changes during ball milling with a significant increase of the open porosity, unsuitable for reversible sodium storage, and decrease of the closed porosity.

Journal ArticleDOI
TL;DR: This article used a self-paced reading experiment of sentences containing emojis to test the extent to which they encode lexical meanings when used in a sentence context. But they did not find that sentence comprehension does not suffer when emoji replace words.

Journal ArticleDOI
TL;DR: In this article , the authors investigated whether pre-diagnostic plasma fetuin-A is associated with risk of complications once diabetes develops, and they found that lower plasma fetin-A levels measured prior to the diagnosis of diabetes may be etiologically implicated in the development of diabetes-associated microvascular disease.
Abstract: Fetuin-A is a hepatokine which has the capacity to prevent vascular calcification. Moreover, it is linked to the induction of metabolic dysfunction, insulin resistance and associated with increased risk of diabetes. It has not been clarified whether fetuin-A associates with risk of vascular, specifically microvascular, complications in patients with diabetes. We aimed to investigate whether pre-diagnostic plasma fetuin-A is associated with risk of complications once diabetes develops.Participants with incident type 2 diabetes and free of micro- and macrovascular disease from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (n = 587) were followed for microvascular and macrovascular complications (n = 203 and n = 60, respectively, median follow-up: 13 years). Plasma fetuin-A was measured approximately 4 years prior to diabetes diagnosis. Prospective associations between baseline fetuin-A and risk of complications were assessed with Cox regression.In multivariable models, fetuin-A was linearly inversely associated with incident total and microvascular complications, hazard ratio (HR, 95% CI) per standard deviation (SD) increase: 0.86 (0.74; 0.99) for total, 0.84 (0.71; 0.98) for microvascular and 0.92 (0.68; 1.24) for macrovascular complications. After additional adjustment for cardiometabolic plasma biomarkers, including triglycerides and high-density lipoprotein, the associations were slightly attenuated: 0.88 (0.75; 1.02) for total, 0.85 (0.72; 1.01) for microvascular and 0.95 (0.67; 1.34) for macrovascular complications. No interaction by sex could be observed (p > 0.10 for all endpoints).Our data show that lower plasma fetuin-A levels measured prior to the diagnosis of diabetes may be etiologically implicated in the development of diabetes-associated microvascular disease.

Journal ArticleDOI
TL;DR: In this paper , the authors provide a coherent overview of the processes causing heavy flood tails and the implications for science and practice and propose nine hypotheses on the mechanisms causing heavy tails in flood peak distributions related to processes in the atmosphere, the catchment, and the river system.
Abstract: Statistical distributions of flood peak discharge often show heavy tail behavior, that is, extreme floods are more likely to occur than would be predicted by commonly used distributions that have exponential asymptotic behavior. This heavy tail behavior may surprise flood managers and citizens, as human intuition tends to expect light tail behavior, and the heaviness of the tails is very difficult to predict, which may lead to unnecessarily high flood damage. Despite its high importance, the literature on the heavy tail behavior of flood distributions is rather fragmented. In this review, we provide a coherent overview of the processes causing heavy flood tails and the implications for science and practice. Specifically, we propose nine hypotheses on the mechanisms causing heavy tails in flood peak distributions related to processes in the atmosphere, the catchment, and the river system. We then discuss to which extent the current knowledge supports or contradicts these hypotheses. We also discuss the statistical conditions for the emergence of heavy tail behavior based on derived distribution theory and relate them to the hypotheses and flood generation mechanisms. We review the degree to which the heaviness of the tails can be predicted from process knowledge and data. Finally, we recommend further research toward testing the hypotheses and improving the prediction of heavy tails.

Journal ArticleDOI
01 Mar 2022-Catena
TL;DR: In this article, the authors used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models.
Abstract: The nature of the interaction between prehistoric humans and their environment, especially the vegetation, has long been of interest. The Qinghai Lake Basin in North China is well-suited to exploring the interactions between prehistoric humans and vegetation in the Tibetan Plateau, because of the comparatively dense distribution of archaeological sites and the ecologically fragile environment. Previous pollen studies of Qinghai Lake have enabled a detailed reconstruction of the regional vegetation, but they have provided relatively little information on vegetation change within the Qinghai Lake watershed. To address the issue we conducted a pollen-based vegetation reconstruction for an archaeological site (YWY), located on the southern shore of Qinghai Lake. We used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models. The results show that, since the lateglacial, spruce forest grew at high altitudes in the surrounding mountains, while the lakeshore environment was occupied mainly by shrub-steppe. From the lateglacial to the middle Holocene, coniferous woodland began to expand downslope and reached the YWY site at ∼ 7.1 kyr BP. The living environment of the local small groups of Paleolithic-Epipaleolithic humans (during 15.3–13.1 kyr BP and 9–6.4 kyr BP) changed from shrub-steppe to coniferous forest–steppe. The pollen record shows no evidence of pronounced changes in the vegetation community corresponding to human activity. However, based on a comparison of the local and regional vegetation reconstructions, low values of biodiversity and a significant increase in two indicators of vegetation degradation, Chenopodiaceae and Rosaceae, suggest that prehistoric hunters-gatherers likely disturbed the local vegetation during ∼ 9.0–6.4 kyr BP. Our findings are a preliminary attempt to study human-environment interactions at Paleolithic-Epipaleolithic sites in the region, and they contribute to ongoing environmental archaeology research in the Tibetan Plateau.

Journal ArticleDOI
TL;DR: In this article, the major drivers of trading activity in commodity futures markets and gage the effect of trading activities on commodity prices are discussed, and the authors provide an extensive overview of the behavior across all market participants and their influence on commodity price.

Journal ArticleDOI
01 Jan 2022-iScience
TL;DR: In this article , a phylogenetic analysis of Notiomastodon platensis from the Arroyo del Vizcaíno site, Uruguay has been presented, with a divergence time of ∼13.5 Ma.

Posted ContentDOI
29 Apr 2022
TL;DR: In this paper , the authors conducted an online survey and found that 35 % of respondents from North Rhine-Westphalia (NW) and 29 % from Rhineland-Palatinate (RP) did not receive any warning.
Abstract: Abstract. In July 2021 intense rainfall caused devastating floods in Western Europe and 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP) questioning their flood forecasting, warning and response system (FFWRS). Data from an online survey (n = 1315) reveal that 35 % of the respondents from NW and 29 % from RP did not receive any warning. Of those who were warned 85 % did not expect a very severe flooding and 46 % did not know what to do. Regression analysis reveals that this knowledge is influenced by gender and flood experience, but also by the contents and the source of the warning message. The results are complemented by analyses of media reports and official warnings that show shortcomings in providing adequate recommendations to people at risk. Dissemination of warnings, communication of the expected flood magnitude and adequate responses are seen as entry points for improving the FFWRS in Germany.

Book ChapterDOI
01 Jan 2022
TL;DR: In-situ acoustic emission (AE) monitoring is carried out in mines, tunnels and underground laboratories in the context of structural health monitoring, in decameter-scale research projects investigating the physics of earthquake nucleation and propagation and in research projects looking into the seismo-hydro-mechanical response of the rock mass in the case of hydraulic stimulations or nuclear waste storage as mentioned in this paper.
Abstract: In-situ acoustic emission (AE) monitoring is carried out in mines, tunnels and underground laboratories in the context of structural health monitoring, in decameter-scale research projects investigating the physics of earthquake nucleation and propagation and in research projects looking into the seismo-hydro-mechanical response of the rock mass in the context of hydraulic stimulations or nuclear waste storage. In addition surface applications e.g. monitoring rock faces of large construction sites, rock fall areas and rock slopes are documented in the literature. In geomechanical investigations in-situ AE monitoring provides information regarding the stability of underground cavities, the state of stress and the integrity of the rock mass. The analysis of AE events recorded in-situ allows to bridge the observational gap between the studies of faulting processes in laboratory and studies of larger natural and induced earthquakes. This chapter provides an overview of various projects involving in-situ AE monitoring underground with a focus on recent achievements in the field. In-situ AE monitoring networks are able to record AE activity from distances up to 200 m, but the monitoring limits depend strongly on the extension of the network, geological and tectonic conditions. Very small seismic events with source sizes on approximately decimeter to millimeter scale are detected. In conclusion in-situ AE monitoring is a useful tool to observe instabilities in rock long before any damage becomes directly visible and is indispensable in high-resolution observations of rock volume deformation in decameter in-situ rock experiments.

Journal ArticleDOI
Luc Illien1
TL;DR: In this paper , the authors disentangle the different forcing of the relative seismic velocity variations retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake, and successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels.
Abstract: Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations δv retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 Mw 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the δv data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for ∼6 months and is shorter than the damage relaxation (∼1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.

Journal ArticleDOI
TL;DR: In this article , the authors tested three key predictions made by this framework with an eco-evolutionary agent-based population model and found that slow-type (fast-type) populations with high responsiveness and low reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations.
Abstract: AbstractThe pace-of-life syndrome (POLS) hypothesis posits that suites of traits are correlated along a slow-fast continuum owing to life history trade-offs. Despite widespread adoption, environmental conditions driving the emergence of POLS remain unclear. A recently proposed conceptual framework of POLS suggests that a slow-fast continuum should align to fluctuations in density-dependent selection. We tested three key predictions made by this framework with an eco-evolutionary agent-based population model. Selection acted on responsiveness (behavioral trait) to interpatch resource differences and the reproductive investment threshold (life history trait). Across environments with density fluctuations of different magnitudes, we observed the emergence of a common axis of trait covariation between and within populations (i.e., the evolution of a POLS). Slow-type (fast-type) populations with high (low) responsiveness and low (high) reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations. In support of the predictions, fast-type populations contained a higher degree of variation in traits and were associated with higher intrinsic reproductive rate (r0) and higher sensitivity to intraspecific competition (γ), pointing to a universal trade-off. While our findings support that POLS aligns with density-dependent selection, we discuss possible mechanisms that may lead to alternative evolutionary pathways.

DOI
01 Mar 2022
TL;DR: In this paper, the authors showed that copper loosely bound to albumin may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells.
Abstract: In Wilson disease, excessive copper accumulates in patients' livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood-brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood-brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.

Journal ArticleDOI
TL;DR: In this article , the authors show that in most diamond anvil cell (DAC) experiments, thickness in most DAC experiments is not measured but inferred from equations of state, assuming isotropic contraction upon compression or assuming isotrophication upon decompression.
Abstract: The thermal conductivities of mantle and core materials have a major impact on planetary evolution, but their experimental determination requires precise knowledge of sample thickness at high pressure. Despite its importance, thickness in most diamond anvil cell (DAC) experiments is not measured but inferred from equations of state, assuming isotropic contraction upon compression or assuming isotropic expansion upon decompression. Here we provide evidence that in DAC experiments both assumptions are invalid for a range of mechanically diverse materials (KCl, NaCl, Ar, MgO, silica glass, Al2O3). Upon compression, these samples are ∼30–50% thinner than expected from isotropic contraction. Most surprisingly, all the studied samples continue to thin upon decompression to 10–20 GPa. Our results partially explain some discrepancies among the highly controversial thermal conductivity values of iron at Earth's core conditions. More generally, we suggest that in situ characterization of sample geometry is essential for conductivity measurements at high pressure.

Journal ArticleDOI
TL;DR: In this article, the authors used the continuous records of ambient seismic noise at 45 seismic stations deployed for more than one year to obtain a set of 1444 phase and 1534 group velocity dispersion curves for Love and Rayleigh waves, respectively.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of modifying their speech to make themselves understood by the listener in noisy communicative settings, and found that talkers typically modify their speech for maintaining conversations in noisy environments.
Abstract: When attempting to maintain conversations in noisy communicative settings, talkers typically modify their speech to make themselves understood by the listener. In this study, we investigated the im...

Journal ArticleDOI
TL;DR: In this article , the authors extend the antenna subtraction method to include photon fragmentation processes up to next-to-next-toleading order (NNLO) in QCD, and derive the integrated forms of the fragmentation antenna functions and describe their interplay with the mass factorisation of the photon fragmentation functions.
Abstract: A bstract The theoretical description of photon production at particle colliders combines direct photon radiation and fragmentation processes, which can not be separated from each other for definitions of photon isolation used in experimental measurements. The theoretical description of these processes must account for collinear parton-photon configurations, retaining the dependence on the photon momentum fraction, and includes the parton-to-photon fragmentation functions. We extend the antenna subtraction method to include photon fragmentation processes up to next-to-next-to-leading order (NNLO) in QCD. Collinear photon radiation is handled using newly introduced fragmentation antenna functions and associated phase space mappings. We derive the integrated forms of the fragmentation antenna functions and describe their interplay with the mass factorisation of the photon fragmentation functions. The construction principles of antenna subtraction terms up to NNLO for identified photons are outlined, thereby enabling the application of the method to different photon production processes at colliders.

Journal ArticleDOI
TL;DR: In this article , the authors evaluate the performance of the one-kilometer German drought monitor (GDM) based on daily soil moisture (SM) simulations from the mesoscale hydrological model (mHM).
Abstract: Abstract. Germany's 2018–2020 consecutive drought events resulted in multiple sectors – including agriculture, forestry, water management, energy production, and transport – being impacted. High-resolution information systems are key to preparedness for such extreme drought events. This study evaluates the new setup of the one-kilometer German drought monitor (GDM), which is based on daily soil moisture (SM) simulations from the mesoscale hydrological model (mHM). The simulated SM is compared against a set of diverse observations from single profile measurements, spatially distributed sensor networks, cosmic-ray neutron stations, and lysimeters at 40 sites in Germany. Our results show that the agreement of simulated and observed SM dynamics in the upper soil (0–25 cm) are especially high in the vegetative active period (0.84 median correlation R) and lower in winter (0.59 median R). The lower agreement in winter results from methodological uncertainties in both simulations and observations. Moderate but significant improvements between the coarser 4 km resolution setup and the ≈ 1.2 km resolution GDM in the agreement to observed SM dynamics is observed in autumn (+0.07 median R) and winter (+0.12 median R). Both model setups display similar correlations to observations in the dry anomaly spectrum, with higher overall agreement of simulations to observations with a larger spatial footprint. The higher resolution of the second GDM version allows for a more detailed representation of the spatial variability of SM, which is particularly beneficial for local risk assessments. Furthermore, the results underline that nationwide drought information systems depend both on appropriate simulations of the water cycle and a broad, high-quality, observational soil moisture database.