scispace - formally typeset
Search or ask a question

Showing papers by "University of Potsdam published in 2020"


Journal ArticleDOI
11 Dec 2020-Science
TL;DR: A monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15% is reported, made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovSKite cell.
Abstract: Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation.

876 citations


Journal ArticleDOI
Gilberto Pastorello1, Carlo Trotta2, E. Canfora2, Housen Chu1  +300 moreInstitutions (119)
TL;DR: The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe, and is detailed in this paper.
Abstract: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

681 citations


Journal ArticleDOI
11 Sep 2020-Science
TL;DR: A new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in the authors' laboratories reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
Abstract: Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

655 citations


Journal ArticleDOI
TL;DR: A global survey covering 196 dry inland waters shows that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters, increasing current inland water carbon flux estimates by 6%.
Abstract: Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sedim ...

474 citations


Journal ArticleDOI
TL;DR: In this article, the authors synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance, and they conclude that models considering only gradual thaw are substantially underestimating carbon emissions.
Abstract: The permafrost zone is expected to be a substantial carbon source to the atmosphere, yet large-scale models currently only simulate gradual changes in seasonally thawed soil. Abrupt thaw will probably occur in <20% of the permafrost zone but could affect half of permafrost carbon through collapsing ground, rapid erosion and landslides. Here, we synthesize the best available information and develop inventory models to simulate abrupt thaw impacts on permafrost carbon balance. Emissions across 2.5 million km2 of abrupt thaw could provide a similar climate feedback as gradual thaw emissions from the entire 18 million km2 permafrost region under the warming projection of Representative Concentration Pathway 8.5. While models forecast that gradual thaw may lead to net ecosystem carbon uptake under projections of Representative Concentration Pathway 4.5, abrupt thaw emissions are likely to offset this potential carbon sink. Active hillslope erosional features will occupy 3% of abrupt thaw terrain by 2300 but emit one-third of abrupt thaw carbon losses. Thaw lakes and wetlands are methane hot spots but their carbon release is partially offset by slowly regrowing vegetation. After considering abrupt thaw stabilization, lake drainage and soil carbon uptake by vegetation regrowth, we conclude that models considering only gradual permafrost thaw are substantially underestimating carbon emissions from thawing permafrost. Analyses of inventory models under two climate change projection scenarios suggest that carbon emissions from abrupt thaw of permafrost through ground collapse, erosion and landslides could contribute significantly to the overall permafrost carbon balance.

399 citations


Journal ArticleDOI
TL;DR: This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use and provides perspective on how to predefine the structures of HPC Ms by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation.
Abstract: Heteroatom-doped porous carbon materials (HPCMs) have found extensive applications in adsorption/separation, organic catalysis, sensing, and energy conversion/storage. The judicious choice of carbon precursors is crucial for the manufacture of HPCMs with specific usages and maximization of their functions. In this regard, polymers as precursors have demonstrated great promise because of their versatile molecular and nanoscale structures, modulatable chemical composition, and rich processing techniques to generate textures that, in combination with proper solid-state chemistry, can be maintained throughout carbonization. This Review comprehensively surveys the progress in polymer-derived functional HPCMs in terms of how to produce and control their porosities, heteroatom doping effects, and morphologies and their related use. First, we summarize and discuss synthetic approaches, including hard and soft templating methods as well as direct synthesis strategies employing polymers to control the pores and/or heteroatoms in HPCMs. Second, we summarize the heteroatom doping effects on the thermal stability, electronic and optical properties, and surface chemistry of HPCMs. Specifically, the heteroatom doping effect, which involves both single-type heteroatom doping and codoping of two or more types of heteroatoms into the carbon network, is discussed. Considering the significance of the morphologies of HPCMs in their application spectrum, potential choices of suitable polymeric precursors and strategies to precisely regulate the morphologies of HPCMs are presented. Finally, we provide our perspective on how to predefine the structures of HPCMs by using polymers to realize their potential applications in the current fields of energy generation/conversion and environmental remediation. We believe that these analyses and deductions are valuable for a systematic understanding of polymer-derived carbon materials and will serve as a source of inspiration for the design of future HPCMs.

384 citations


Journal ArticleDOI
TL;DR: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi), and treats 19 phyla of fungi, including all currently described orders of fungi.
Abstract: This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.

381 citations


Journal ArticleDOI
TL;DR: In this article, the authors outline the historical development of night-time optical sensors up to the current state-of-the-art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing.

369 citations


Journal ArticleDOI
TL;DR: The steps taken to provide better guidance on structuring complex ODDs and an ODD summary for inclusion in a journal article are documented and the need for standard descriptions of simulation experiments is advocated.
Abstract: The Overview, Design concepts and Details (ODD) protocol for describing Individual-and Agent-Based Models (ABMs) is now widely accepted and used to document such models in journal articles. As a standardized document for providing a consistent, logical and readable account of the structure and dynamics of ABMs, some research groups also find it useful as a workflow for model design. Even so, there are still limitations to ODD that obstruct its more widespread adoption. Such limitations are discussed and addressed in this paper: the limited availability of guidance on how to use ODD; the length of ODD documents; limitations of ODD for highly complex models; lack of sufficient details of many ODDs to enable reimplementation without access to the model code; and the lack of provision for sections in the document structure covering model design ratio-nale, the model’s underlying narrative, and the means by which the model’s fitness for purpose is evaluated. We document the steps we have taken to provide better guidance on: structuring complex ODDs and an ODD summary for inclusion in a journal article (with full details in supplementary material; Table 1); using ODD to point readers to relevant sections of the model code; update the document structure to include sections on model rationale and evaluation. We also further advocate the need for standard descriptions of simulation experiments and argue that ODD can in principle be used for any type of simulation model. Thereby ODD would provide a lingua franca for simulation modelling.

328 citations


Journal ArticleDOI
15 May 2020-Science
TL;DR: It is shown that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate, and increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change.
Abstract: Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes.

317 citations



Journal ArticleDOI
26 Aug 2020-Nature
TL;DR: It is shown that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness, which represents a previously unknown thermosensory mechanism.
Abstract: Temperature controls plant growth and development, and climate change has already altered the phenology of wild plants and crops1. However, the mechanisms by which plants sense temperature are not well understood. The evening complex is a major signalling hub and a core component of the plant circadian clock2,3. The evening complex acts as a temperature-responsive transcriptional repressor, providing rhythmicity and temperature responsiveness to growth through unknown mechanisms2,4-6. The evening complex consists of EARLY FLOWERING 3 (ELF3)4,7, a large scaffold protein and key component of temperature sensing; ELF4, a small α-helical protein; and LUX ARRYTHMO (LUX), a DNA-binding protein required to recruit the evening complex to transcriptional targets. ELF3 contains a polyglutamine (polyQ) repeat8-10, embedded within a predicted prion domain (PrD). Here we find that the length of the polyQ repeat correlates with thermal responsiveness. We show that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness. The temperature sensitivity of ELF3 is also modulated by the levels of ELF4, indicating that ELF4 can stabilize the function of ELF3. In both Arabidopsis and a heterologous system, ELF3 fused with green fluorescent protein forms speckles within minutes in response to higher temperatures, in a PrD-dependent manner. A purified fragment encompassing the ELF3 PrD reversibly forms liquid droplets in response to increasing temperatures in vitro, indicating that these properties reflect a direct biophysical response conferred by the PrD. The ability of temperature to rapidly shift ELF3 between active and inactive states via phase transition represents a previously unknown thermosensory mechanism.

Journal ArticleDOI
Sergei Põlme1, Sergei Põlme2, Kessy Abarenkov1, R. Henrik Nilsson3, Björn D. Lindahl4, Karina E. Clemmensen4, Håvard Kauserud5, Nhu H. Nguyen6, Rasmus Kjøller7, Scott T. Bates8, Petr Baldrian9, Tobias Guldberg Frøslev7, Kristjan Adojaan2, Alfredo Vizzini10, Ave Suija2, Donald H. Pfister11, Hans Otto Baral, Helle Järv12, Hugo Madrid13, Hugo Madrid14, Jenni Nordén, Jian-Kui Liu15, Julia Pawłowska16, Kadri Põldmaa2, Kadri Pärtel2, Kadri Runnel2, Karen Hansen17, Karl-Henrik Larsson, Kevin D. Hyde18, Marcelo Sandoval-Denis, Matthew E. Smith19, Merje Toome-Heller20, Nalin N. Wijayawardene, Nelson Menolli21, Nicole K. Reynolds19, Rein Drenkhan22, Sajeewa S. N. Maharachchikumbura15, Tatiana Baptista Gibertoni23, Thomas Læssøe7, William J. Davis24, Yuri Tokarev, Adriana Corrales25, Adriene Mayra Soares, Ahto Agan2, A. R. Machado23, Andrés Argüelles-Moyao26, Andrew P. Detheridge, Angelina de Meiras-Ottoni23, Annemieke Verbeken27, Arun Kumar Dutta28, Bao-Kai Cui29, C. K. Pradeep, César Marín30, Daniel E. Stanton, Daniyal Gohar2, Dhanushka N. Wanasinghe31, Eveli Otsing2, Farzad Aslani2, Gareth W. Griffith, Thorsten Lumbsch32, Hans-Peter Grossart33, Hans-Peter Grossart34, Hossein Masigol35, Ina Timling36, Inga Hiiesalu2, Jane Oja2, John Y. Kupagme2, József Geml, Julieta Alvarez-Manjarrez26, Kai Ilves2, Kaire Loit22, Kalev Adamson22, Kazuhide Nara37, Kati Küngas2, Keilor Rojas-Jimenez38, Krišs Bitenieks39, Laszlo Irinyi40, Laszlo Irinyi41, Laszlo Nagy, Liina Soonvald22, Li-Wei Zhou31, Lysett Wagner33, M. Catherine Aime8, Maarja Öpik2, María Isabel Mujica30, Martin Metsoja2, Martin Ryberg42, Martti Vasar2, Masao Murata37, Matthew P. Nelsen32, Michelle Cleary4, Milan C. Samarakoon18, Mingkwan Doilom31, Mohammad Bahram2, Mohammad Bahram4, Niloufar Hagh-Doust2, Olesya Dulya2, Peter R. Johnston43, Petr Kohout9, Qian Chen31, Qing Tian18, Rajasree Nandi44, Rasekh Amiri2, Rekhani H. Perera18, Renata dos Santos Chikowski23, Renato Lucio Mendes-Alvarenga23, Roberto Garibay-Orijel26, Robin Gielen2, Rungtiwa Phookamsak31, Ruvishika S. Jayawardena18, Saleh Rahimlou2, Samantha C. Karunarathna31, Saowaluck Tibpromma31, Shawn P. Brown45, Siim-Kaarel Sepp2, Sunil Mundra46, Sunil Mundra5, Zhu Hua Luo47, Tanay Bose48, Tanel Vahter2, Tarquin Netherway4, Teng Yang31, Tom W. May49, Torda Varga, Wei Li50, Victor R. M. Coimbra23, Virton Rodrigo Targino de Oliveira23, Vitor Xavier de Lima23, Vladimir S. Mikryukov2, Yong-Zhong Lu51, Yosuke Matsuda52, Yumiko Miyamoto53, Urmas Kõljalg1, Urmas Kõljalg2, Leho Tedersoo2, Leho Tedersoo1 
American Museum of Natural History1, University of Tartu2, University of Gothenburg3, Swedish University of Agricultural Sciences4, University of Oslo5, University of Hawaii at Manoa6, University of Copenhagen7, Purdue University8, Academy of Sciences of the Czech Republic9, University of Turin10, Harvard University11, Synlab Group12, Universidad Santo Tomás13, Universidad Mayor14, University of Electronic Science and Technology of China15, University of Warsaw16, Swedish Museum of Natural History17, Mae Fah Luang University18, University of Florida19, Laos Ministry of Agriculture and Forestry20, São Paulo Federal Institute of Education, Science and Technology21, Estonian University of Life Sciences22, Federal University of Pernambuco23, United States Department of Energy24, Del Rosario University25, National Autonomous University of Mexico26, Ghent University27, West Bengal State University28, Beijing Forestry University29, Pontifical Catholic University of Chile30, Chinese Academy of Sciences31, Field Museum of Natural History32, Leibniz Association33, University of Potsdam34, University of Gilan35, University of Alaska Fairbanks36, University of Tokyo37, University of Costa Rica38, Forest Research Institute39, University of Sydney40, Westmead Hospital41, Uppsala University42, Landcare Research43, University of Chittagong44, University of Memphis45, United Arab Emirates University46, Ministry of Land and Resources of the People's Republic of China47, University of Pretoria48, Royal Botanic Gardens49, Ocean University of China50, Guizhou University51, Mie University52, Hokkaido University53
TL;DR: Fungal traits and character database FungalTraits operating at genus and species hypothesis levels is presented in this article, which includes 17 lifestyle related traits of fungal and Stramenopila genera.
Abstract: The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold.


Journal ArticleDOI
TL;DR: Free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated and it is shown that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy.
Abstract: Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.

Journal ArticleDOI
19 May 2020
TL;DR: In this article, the authors identify technologies, assess their readiness and propose eight action points that could accelerate the transition towards a more sustainable food system and argue that the speed of innovation could be significantly increased with the appropriate incentives, regulations and social licence.
Abstract: Future technologies and systemic innovation are critical for the profound transformation the food system needs. These innovations range from food production, land use and emissions, all the way to improved diets and waste management. Here, we identify these technologies, assess their readiness and propose eight action points that could accelerate the transition towards a more sustainable food system. We argue that the speed of innovation could be significantly increased with the appropriate incentives, regulations and social licence. These, in turn, require constructive stakeholder dialogue and clear transition pathways.

Journal ArticleDOI
TL;DR: In this article, the authors provide a defacto definition of the concept of Industry 4.0 from a sociotechnical perspective based on its most often cited key features, as well as a thorough review of how far sustainability is incorporated in it.

Journal ArticleDOI
Thomas Lecocq1, Stephen Hicks2, Koen Van Noten1, Kasper van Wijk3, Paula Koelemeijer4, Raphael S. M. De Plaen5, Frédérick Massin6, Gregor Hillers7, Robert E. Anthony8, Maria-Theresia Apoloner9, Mario Arroyo-Solórzano10, Jelle Assink11, Pınar Büyükakpınar12, Pınar Büyükakpınar13, Andrea Cannata14, Andrea Cannata15, Flavio Cannavò15, Sebastián Carrasco16, Corentin Caudron17, Esteban J. Chaves, Dave Cornwell18, David Craig19, Olivier F. C. den Ouden11, Olivier F. C. den Ouden20, Jordi Diaz21, Stefanie Donner22, Christos Evangelidis, Läslo Evers20, Läslo Evers11, Benoit Fauville, Gonzalo A. Fernandez, Dimitrios Giannopoulos23, Steven J. Gibbons24, Társilo Girona25, Bogdan Grecu, Marc Grunberg26, György Hetényi27, Anna Horleston28, Adolfo Inza, Jessica C. E. Irving29, Jessica C. E. Irving28, Mohammadreza Jamalreyhani30, Mohammadreza Jamalreyhani12, Alan L. Kafka31, Mathijs Koymans11, Mathijs Koymans20, C. R. Labedz32, Eric Larose17, Nathaniel J. Lindsey33, Mika McKinnon34, Mika McKinnon35, T. Megies36, Meghan S. Miller37, William G. Minarik38, Louis Moresi37, Victor H. Márquez-Ramírez5, Martin Möllhoff19, Ian M. Nesbitt39, Shankho Niyogi40, Javier Ojeda41, Adrien Oth, Simon Richard Proud42, Jay J. Pulli43, Jay J. Pulli31, Lise Retailleau44, Annukka E. Rintamäki7, Claudio Satriano44, Martha K. Savage45, Shahar Shani-Kadmiel20, Reinoud Sleeman11, Efthimios Sokos46, Klaus Stammler22, Alexander E. Stott2, Shiba Subedi27, Mathilde B. Sørensen47, Taka'aki Taira48, Mar Tapia49, Fatih Turhan13, Ben A. van der Pluijm50, Mark Vanstone, Jérôme Vergne26, Tommi Vuorinen7, Tristram Warren42, Joachim Wassermann36, Han Xiao51 
Royal Observatory of Belgium1, Imperial College London2, University of Auckland3, Royal Holloway, University of London4, National Autonomous University of Mexico5, Swiss Seismological Service6, University of Helsinki7, United States Geological Survey8, Central Institution for Meteorology and Geodynamics9, University of Costa Rica10, Royal Netherlands Meteorological Institute11, University of Potsdam12, Kandilli Observatory and Earthquake Research Institute13, University of Catania14, National Institute of Geophysics and Volcanology15, University of Cologne16, University of Savoy17, King's College, Aberdeen18, Dublin Institute for Advanced Studies19, Delft University of Technology20, Spanish National Research Council21, Institute for Geosciences and Natural Resources22, Mediterranean University23, Norwegian Geotechnical Institute24, University of Alaska Fairbanks25, University of Strasbourg26, University of Lausanne27, University of Bristol28, Princeton University29, University of Tehran30, Boston College31, California Institute of Technology32, Stanford University33, Search for extraterrestrial intelligence34, University of British Columbia35, Ludwig Maximilian University of Munich36, Australian National University37, McGill University38, University of Maine39, University of California, Riverside40, University of Chile41, University of Oxford42, BBN Technologies43, Institut de Physique du Globe de Paris44, Victoria University of Wellington45, University of Patras46, University of Bergen47, University of California, Berkeley48, Institut d'Estudis Catalans49, University of Michigan50, University of California, Santa Barbara51
11 Sep 2020-Science
TL;DR: The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record and suggests that seismology provides an absolute, real-time estimate of human activities.
Abstract: Human activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record. Although the reduction is strongest at surface seismometers in populated areas, this seismic quiescence extends for many kilometers radially and hundreds of meters in depth. This quiet period provides an opportunity to detect subtle signals from subsurface seismic sources that would have been concealed in noisier times and to benchmark sources of anthropogenic noise. A strong correlation between seismic noise and independent measurements of human mobility suggests that seismology provides an absolute, real-time estimate of human activities.

Journal ArticleDOI
TL;DR: In this article, a map that correlates tectonic units between Alps and western Turkey accompanied by a text providing access to literature data is presented, explaining the concepts used for defining the mapped Tectonic Units, and first-order paleogeographic inferences.

Journal ArticleDOI
TL;DR: In this paper, the authors developed the first multipolar precessing waveform model in the effective-one-body (EOB) formalism for the entire coalescence stage (i.e., inspiral, merger and ringdown) of binary black holes: SEOBNRv4PHM.
Abstract: As gravitational-wave detectors become more sensitive and broaden their frequency bandwidth, we will access a greater variety of signals emitted by compact binary systems, shedding light on their astrophysical origin and environment. A key physical effect that can distinguish among different formation scenarios is the misalignment of the spins with the orbital angular momentum, causing the spins and the binary’s orbital plane to precess. To accurately model such precessing signals, especially when masses and spins vary in the wide astrophysical range, it is crucial to include multipoles beyond the dominant quadrupole. Here, we develop the first multipolar precessing waveform model in the effective-one-body (EOB) formalism for the entire coalescence stage (i.e., inspiral, merger and ringdown) of binary black holes: SEOBNRv4PHM. In the nonprecessing limit, the model reduces to SEOBNRv4HM, which was calibrated to numerical-relativity (NR) simulations, and waveforms from black-hole perturbation theory. We validate SEOBNRv4PHM by comparing it to the public catalog of 1405 precessing NR waveforms of the Simulating eXtreme Spacetimes (SXS) collaboration, and also to 118 SXS precessing NR waveforms, produced as part of this project, which span mass ratios 1-4 and (dimensionless) black-hole’s spins up to 0.9. We stress that SEOBNRv4PHM is not calibrated to NR simulations in the precessing sector. We compute the unfaithfulness against the 1523 SXS precessing NR waveforms, and find that, for 94% (57%) of the cases, the maximum value, in the total mass range 20−200 M⊙, is below 3% (1%). Those numbers change to 83% (20%) when using the inspiral-merger-ringdown, multipolar, precessing phenomenological model IMRPhenomPv3HM. We investigate the impact of such unfaithfulness values with two Bayesian, parameter-estimation studies on synthetic signals. We also compute the unfaithfulness between those waveform models as a function of the mass and spin parameters to identify in which part of the parameter space they differ the most. We validate them also against the multipolar, precessing NR surrogate model NRSur7dq4, and find that the SEOBNRv4PHM model outperforms IMRPhenomPv3HM.

Journal ArticleDOI
TL;DR: The ASP-CORE-2 standard input language for Answer Set Programming, which has been adopted in ASP Competition events since 2013, is presented.
Abstract: Standardization of solver input languages has been a main driver for the growth of several areas within knowledge representation and reasoning, fostering the exploitation in actual applications. In this document, we present the ASP-CORE-2 standard input language for Answer Set Programming, which has been adopted in ASP Competition events since 2013.

Journal ArticleDOI
TL;DR: More knowledge is required on the microbial community composition of microplastic biofilms and their ecological functions in order to better evaluate consequences for the environment and animal health, including humans, especially since the worldwide abundance ofmicroplastics is predicted to dramatically increase.
Abstract: Microplastics in the biosphere are currently of great environmental concern because of their potential toxicity for aquatic biota and human health and association with pathogenic microbiota. Microplastics can occur in high abundance in all aquatic environments, including oceans, rivers and lakes. Recent findings have highlighted the role of microplastics as important vectors for microorganisms, which can form fully developed biofilms on this artificial substrate. Microplastics therefore provide new microbial niches in the aquatic environment, and the developing biofilms may significantly differ in microbial composition compared to natural free-living or particle-associated microbial populations in the surrounding water. In this article, we discuss the composition and ecological function of the microbial communities found in microplastic biofilms. The potential factors that influence the richness and diversity of such microbial microplastic communities are also evaluated. Microbe-microbe and microbe-substrate interactions in microplastic biofilms have been little studied and are not well understood. Multiomics tools together with morphological, physiological and biochemical analyses should be combined to provide a more comprehensive overview on the ecological role of microplastic biofilms. These new microbial niches have so far unknown consequences for microbial ecology and environmental processes in aquatic ecosystems. More knowledge is required on the microbial community composition of microplastic biofilms and their ecological functions in order to better evaluate consequences for the environment and animal health, including humans, especially since the worldwide abundance of microplastics is predicted to dramatically increase. Key Points • Bacteria are mainly studied in community analyses: fungi are neglected. • Microbial colonization of microplastics depends on substrate, location and time. • Community ecology is a promising approach to investigate microbial colonization. • Biodegradable plastics, and ecological roles of microplastic biofilms, need analysis.

Journal ArticleDOI
TL;DR: In this paper, the authors present results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Comparison for CMIP6 (ISMIP6).
Abstract: . Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.

Journal ArticleDOI
TL;DR: Geopsy has become a mature multiplatform open-source package that has already been recognized as a reference tool for analyzing ambient vibration data in the context of site characterization studies and a number of lower-level tools guarantee maximum flexibility in accessing and controlling processing results at any stage of the analysis.
Abstract: Ambient vibrations are nowadays considerably used worldwide for numerous types of engineering applications and scientific research. Geopsy and its companion tools are part of that landscape. Since the first release of the program package in 2005, as outcome of the European Union project Site Effects aSsessment from AMbient noisE, Geopsy has become a mature multiplatform open-source package (released under GNU Public License version 3) that has already been recognized as a reference tool for analyzing ambient vibration data in the context of site characterization studies. The community of users has grown from a core group of researchers up to thousands of seismologists and engineers on every career level and on all continents. The versatility of geopsy allows for the processing of all kinds of data needed in site characterization studies, that is, from single station single trace to three-component array recordings. In all of the aforementioned cases, the steps from field acquisition to the production of publication-ready figures are covered and supported by user-friendly graphical user interfaces or corresponding command-line tools for the automation of the complete processing chain. To avoid black-box usage, a number of lower-level tools guarantee maximum flexibility in accessing and controlling processing results at any stage of the analysis.

Journal ArticleDOI
17 Jan 2020-Science
TL;DR: Carbon cycle modeling and paleotemperature records are used to constrain the timing of volcanogenic outgassing and found support for major out gassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change.
Abstract: The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.

Journal ArticleDOI
TL;DR: A reduced form approach is proposed that is able to estimate UHI intensities based only on the number and location of urban sites as well as their distance, which can serve as a UHI rule of thumb for the comparison of urban development scenarios.
Abstract: The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather conditions. For mono-centric cities, we propose a linear combination of logarithmic city area and logarithmic gross building volume, which also captures the influence of building density. By studying various city shapes, we generalise and propose a reduced form to estimate UHI intensities based only on the structure of urban sites, as well as their relative distances. We conclude that in addition to the size, the UHI intensity of a city is directly related to the density and an amplifying effect that urban sites have on each other. Our approach can serve as a UHI rule of thumb for the comparison of urban development scenarios. How UHI intensity responds to variations of urban structure is unclear. Here the authors proposed a reduced form approach that is able to estimate UHI intensities based only on the number and location of urban sites as well as their distance.

Posted ContentDOI
Ji Chen1, Ji Chen2, Cassandra N. Spracklen3, Cassandra N. Spracklen4  +475 moreInstitutions (145)
25 Jul 2020-bioRxiv
TL;DR: Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways, increasing understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
Abstract: Glycaemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycaemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated haemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P

Journal ArticleDOI
18 Dec 2020-Science
TL;DR: A framework to combine multiple constraints on the masses and radii of neutron stars, including data from gravitational waves, electromagnetic observations, and theoretical nuclear physics calculations is developed, which constrain the neutron-star equation of state and measures the Hubble constant.
Abstract: Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using x-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1.4-solar mass neutron star is [Formula: see text] km at 90% confidence and the Hubble constant is [Formula: see text] at 1σ uncertainty.

Journal ArticleDOI
TL;DR: It is suggested that the formation of methane by cyanobacteria contributes to methane accumulation in oxygen-saturated marine and limnic surface waters, and contributes to global warming potentially having a direct positive feedback on climate change.
Abstract: Evidence is accumulating to challenge the paradigm that biogenic methanogenesis, considered a strictly anaerobic process, is exclusive to archaea. We demonstrate that cyanobacteria living in marine, freshwater, and terrestrial environments produce methane at substantial rates under light, dark, oxic, and anoxic conditions, linking methane production with light-driven primary productivity in a globally relevant and ancient group of photoautotrophs. Methane production, attributed to cyanobacteria using stable isotope labeling techniques, was enhanced during oxygenic photosynthesis. We suggest that the formation of methane by cyanobacteria contributes to methane accumulation in oxygen-saturated marine and limnic surface waters. In these environments, frequent cyanobacterial blooms are predicted to further increase because of global warming potentially having a direct positive feedback on climate change. We conclude that this newly identified source contributes to the current natural methane budget and most likely has been producing methane since cyanobacteria first evolved on Earth.

Journal ArticleDOI
TL;DR: A robust probabilistic estimate of average GLOFs return periods in the Himalayan region is presented, drawing on 5.4 billion simulations, and the estimated GLOF hazard is tied to the rate of historic lake outbursts and the number of present lakes, which both are highest in the Eastern Himalayas.
Abstract: Sustained glacier melt in the Himalayas has gradually spawned more than 5,000 glacier lakes that are dammed by potentially unstable moraines. When such dams break, glacier lake outburst floods (GLOFs) can cause catastrophic societal and geomorphic impacts. We present a robust probabilistic estimate of average GLOFs return periods in the Himalayan region, drawing on 5.4 billion simulations. We find that the 100-y outburst flood has an average volume of 33.5+3.7/-3.7 × 106 m3 (posterior mean and 95% highest density interval [HDI]) with a peak discharge of 15,600+2,000/-1,800 m3⋅s-1 Our estimated GLOF hazard is tied to the rate of historic lake outbursts and the number of present lakes, which both are highest in the Eastern Himalayas. There, the estimated 100-y GLOF discharge (∼14,500 m3⋅s-1) is more than 3 times that of the adjacent Nyainqentanglha Mountains, and at least an order of magnitude higher than in the Hindu Kush, Karakoram, and Western Himalayas. The GLOF hazard may increase in these regions that currently have large glaciers, but few lakes, if future projected ice loss generates more unstable moraine-dammed lakes than we recognize today. Flood peaks from GLOFs mostly attenuate within Himalayan headwaters, but can rival monsoon-fed discharges in major rivers hundreds to thousands of kilometers downstream. Projections of future hazard from meteorological floods need to account for the extreme runoffs during lake outbursts, given the increasing trends in population, infrastructure, and hydropower projects in Himalayan headwaters.