scispace - formally typeset
Search or ask a question
Institution

University of Potsdam

EducationPotsdam, Germany
About: University of Potsdam is a education organization based out in Potsdam, Germany. It is known for research contribution in the topics: Population & Computer science. The organization has 9629 authors who have published 26740 publications receiving 759745 citations. The organization is also known as: Universität Potsdam.


Papers
More filters
Journal ArticleDOI
TL;DR: This work shows that total microbial cell abundance in subseafloor sediment varies between sites by ca.
Abstract: The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9⋅1029 cells [corresponding to 4.1 petagram (Pg) C and ∼0.6% of Earth’s total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth’s total number of microbes and total living biomass to be, respectively, 50–78% and 10–45% lower than previous estimates.

791 citations

Journal ArticleDOI
TL;DR: In this paper, a new reconstruction of Alpine Tethys combines plate-kinematic modeling with a wealth of geological data and seismic tomography to shed light on its evolution, from sea-floor spreading through subduction to collision in the Alps.

787 citations

Journal ArticleDOI
TL;DR: In this article, the particular properties of soluble derivatives of polyfluorene homopolymers with respect to emission properties, control of color stability and efficiency in electroluminescence, alignment in thin layers and polarized emission are discussed.
Abstract: Since the first report on blue electroluminescence from a soluble poly(9,9-di-alkylfluorene), fluorene-based homo- and copolymers have evolved as a major class of polymeric emitters for highly efficient organic light-emitting diodes. This Review is concerned with the particular properties of soluble derivatives of polyfluorene homopolymers with respect to emission properties, control of color stability and efficiency in electroluminescence, alignment in thin layers and polarized emission. A major point of discussion is the origin of unwanted emission contributions in the photoluminescence and electroluminescence spectra of solid layers as well as concepts to avoid these contributions in order to ensure stable device performance. Further, the alignment of polyfluorenes and their use in polarized light-emitting diodes is addressed.

787 citations

Book ChapterDOI
01 Jan 2013
TL;DR: In this paper, the authors present the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems, focusing on four essential topics of selfadaptation: design space for selfadaptive solutions, software engineering processes, from centralized to decentralized control, and practical run-time verification & validation.
Abstract: The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.

783 citations

Journal ArticleDOI
Jo Ann Banks1, Tomoaki Nishiyama2, Mitsuyasu Hasebe3, Mitsuyasu Hasebe4, John L. Bowman5, John L. Bowman6, Michael Gribskov1, Claude W. dePamphilis7, Victor A. Albert8, Naoki Aono4, Tsuyoshi Aoyama3, Tsuyoshi Aoyama4, Barbara A. Ambrose9, Neil W. Ashton10, Michael J. Axtell7, Elizabeth I. Barker10, Michael S. Barker11, Jeffrey L. Bennetzen12, Nicholas D. Bonawitz1, Clint Chapple1, Chaoyang Cheng, Luiz Gustavo Guedes Corrêa13, Michael Dacre14, Jeremy D. DeBarry12, Ingo Dreyer13, Marek Eliáš15, Eric M. Engstrom16, Mark Estelle17, Liang Feng12, Cédric Finet18, Sandra K. Floyd6, Wolf B. Frommer19, Tomomichi Fujita20, Lydia Gramzow21, Michael Gutensohn1, Michael Gutensohn22, Jesper Harholt23, Mitsuru Hattori24, Mitsuru Hattori25, Alexander Heyl26, Tadayoshi Hirai27, Yuji Hiwatashi3, Yuji Hiwatashi4, Masaki Ishikawa, Mineko Iwata, Kenneth G. Karol9, Barbara Koehler13, Uener Kolukisaoglu28, Uener Kolukisaoglu29, Minoru Kubo, Tetsuya Kurata30, Sylvie Lalonde19, Kejie Li1, Ying Li1, Ying Li31, Amy Litt9, Eric Lyons32, Gerard Manning14, Takeshi Maruyama20, Todd P. Michael33, Koji Mikami20, Saori Miyazaki4, Saori Miyazaki34, Shin-Ichi Morinaga24, Shin-Ichi Morinaga4, TakashiMurata3, TakashiMurata4, Bernd Mueller-Roeber35, David R. Nelson36, Mari Obara, Yasuko Oguri, Richard G. Olmstead37, Naoko T. Onodera38, Bent O. Petersen23, Birgit Pils39, Michael J. Prigge17, Stefan A. Rensing40, Diego Mauricio Riaño-Pachón35, Diego Mauricio Riaño-Pachón41, Alison W. Roberts42, Yoshikatsu Sato, Henrik Vibe Scheller32, Henrik Vibe Scheller43, Burkhard Schulz1, Christian Schulz44, Eugene V. Shakirov45, Nakako Shibagaki46, Naoki Shinohara20, Dorothy E. Shippen45, Iben Sørensen47, Iben Sørensen23, Ryo Sotooka20, Nagisa Sugimoto, Mamoru Sugita25, Naomi Sumikawa4, Milos Tanurdzic48, Günter Theißen21, Peter Ulvskov23, Sachiko Wakazuki, Jing-Ke Weng1, Jing-Ke Weng14, William G.T. Willats23, Daniel Wipf49, Paul G. Wolf50, Lixing Yang12, Andreas Zimmer40, Qihui Zhu12, Therese Mitros32, Uffe Hellsten51, Dominique Loqué43, Robert Otillar51, Asaf Salamov51, Jeremy Schmutz51, Harris Shapiro51, Erika Lindquist51, Susan Lucas51, Daniel S. Rokhsar51, Daniel S. Rokhsar32, Igor V. Grigoriev51 
20 May 2011-Science
TL;DR: The genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported, is reported, finding that the transition from a gametophytes- to a sporophyte-dominated life cycle required far fewer new genes than the Transition from a non Seed vascular to a flowering plant.
Abstract: Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.

750 citations


Authors

Showing all 9969 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Markus Antonietti1761068127235
Marc Weber1672716153502
Peter Capak14767970483
Heiner Boeing140102492580
Alisdair R. Fernie133101064026
Klaus-Robert Müller12976479391
Claudia Felser113119858589
Guochun Zhao11340640886
Matthias Steinmetz11246167802
Jürgen Kurths105103862179
Peter Schmidt10563861822
Erwin P. Bottinger10234242089
Knud Jahnke9435231542
Gerd Gigerenzer9453352356
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

95% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

University of California, Santa Barbara
80.8K papers, 4.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023276
2022678
20212,368
20202,236
20192,008