scispace - formally typeset
Search or ask a question
Institution

University of Texas at Arlington

EducationArlington, Texas, United States
About: University of Texas at Arlington is a education organization based out in Arlington, Texas, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 11758 authors who have published 28598 publications receiving 801626 citations. The organization is also known as: UT Arlington & University of Texas-Arlington.


Papers
More filters
Journal ArticleDOI
TL;DR: An argument is developed for a curvilinear aggregate consensus-performance relationship, moderated by environmental dynamism, and a model and associated propositions are advanced to further descriptive and normative theory.
Abstract: The results of recent consensus-performance research have been equivocal. Substantive and methodological issues are examined to suggest reasons for this equivocality. Top management team composition, structure, and decision processes are proposed as antecedents to the consensus-performance relationship. An argument is developed for a curvilinear aggregate consensus-performance relationship, moderated by environmental dynamism. A model and associated propositions are advanced to further descriptive and normative theory.

295 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, J. Abdallah4  +2914 moreInstitutions (169)
TL;DR: In this article, the jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text]TeV corresponding to an integrated luminosity of [formula] see text][formula:see text].
Abstract: The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.

294 citations

Journal ArticleDOI
TL;DR: The results revealed the main research themes that could form a framework of the future MOOC research: i) student engagement and learning success, ii) MOOC design and curriculum, iii) self-regulated learning and social learning, iv) social network analysis and networked learning, and v) motivation, attitude and success criteria.
Abstract: This paper reports on the results of an analysis of the research proposals submitted to the MOOC Research Initiative (MRI) funded by the Gates Foundation and administered by Athabasca University. The goal of MRI was to mobilize researchers to engage into critical interrogation of MOOCs. The submissions – 266 in Phase 1, out of which 78 was recommended for resubmission in the extended form in Phase 2, and finally, 28 funded – were analyzed by applying conventional and automated content analysis methods as well as citation network analysis methods. The results revealed the main research themes that could form a framework of the future MOOC research: i) student engagement and learning success, ii) MOOC design and curriculum, iii) self-regulated learning and social learning, iv) social network analysis and networked learning, and v) motivation, attitude and success criteria. The theme of social learning received the greatest interest and had the highest success in attracting funding. The submissions that planned on using learning analytics methods were more successful. The use of mixed methods was by far the most popular. Design-based research methods were also suggested commonly, but the questions about their applicability arose regarding the feasibility to perform multiple iterations in the MOOC context and rather a limited focus on technological support for interventions. The submissions were dominated by the researchers from the field of education (75% of the accepted proposals). Not only was this a possible cause of a complete lack of success of the educational technology innovation theme, but it could be a worrying sign of the fragmentation in the research community and the need to increased efforts towards enhancing interdisciplinarity.

291 citations

Journal ArticleDOI
TL;DR: In this article, the pool boiling behavior of low concentration nanofluids (⩽ 1 g/l) was experimentally studied over a flat heater at 1 m, and the authors investigated possible causes responsible for the deposition of nanoparticle on the heater surface.

291 citations

Journal ArticleDOI
TL;DR: Four experiments were conducted with infants 4.5-11.5 months of age using the same procedure, except that only one feature was manipulated at a time: shape, size, pattern, or color, and results indicated that 4.

291 citations


Authors

Showing all 11918 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
David H. Adams1551613117783
Andrew White1491494113874
Kaushik De1391625102058
Steven F. Maier13458860382
Andrew Brandt132124694676
Amir Farbin131112583388
Evangelos Gazis131114784159
Lee Sawyer130134088419
Fernando Barreiro130108283413
Stavros Maltezos12994379654
Elizabeth Gallas129115785027
Francois Vazeille12995279800
Sotirios Vlachos12878977317
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of Texas at Austin
206.2K papers, 9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202353
2022243
20211,722
20201,664
20191,493
20181,462