scispace - formally typeset
Search or ask a question
Institution

University of Texas at Arlington

EducationArlington, Texas, United States
About: University of Texas at Arlington is a education organization based out in Arlington, Texas, United States. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 11758 authors who have published 28598 publications receiving 801626 citations. The organization is also known as: UT Arlington & University of Texas-Arlington.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a nonintrusive load monitoring (NILM) technique based on the analysis of load signatures is presented, where artificial neural networks, in combination with turn-on transient energy analysis, are used to improve recognition accuracy and computational speed of NILM results.
Abstract: Based upon the analysis of load signatures, this paper presents a nonintrusive load monitoring (NILM) technique. With a characterizing response associated with a transient energy signature, a reliable and accurate recognition result can be obtained. In this paper, artificial neural networks, in combination with turn-on transient energy analysis, are used to improve recognition accuracy and computational speed of NILM results. To minimize the distortion phenomenon in current measurements from the hysteresis of traditional current transformer (CT) iron cores, a coreless Hall CT is adopted to accurately detect nonsinusoidal waves to improve NILM accuracy. The experimental results indicate that the incorporation of turn-on transient energy algorithm into NILM significantly improve the recognition accuracy and the computational speed.

173 citations

Journal ArticleDOI
M. G. Aartsen1, Rasha Abbasi2, Markus Ackermann, Jenni Adams1  +440 moreInstitutions (60)
TL;DR: In this article, the authors present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies.
Abstract: The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles havemillions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In thiswhite paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube- Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multimessenger astronomy, fundamentally advancing our knowledge of the highenergy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.

172 citations

Journal ArticleDOI
TL;DR: Qualitative analysis revealed how social and spiritual support was instrumental to participants' recovery, growth, and resilience, and implications for helping professionals include gaining a more comprehensive understanding of recovery from domestic violence.
Abstract: This mixed-methods study explored the recovery process and outcomes for 37 women formerly in an abusive intimate partner relationship. Standardized measures of current psychosocial functioning indicated participants were largely asymptomatic for posttraumatic stress disorder and had relatively strong resilience. Qualitative analysis revealed how social and spiritual support was instrumental to participants' recovery, growth, and resilience. Implications for helping professionals include gaining a more comprehensive understanding of recovery from domestic violence. This type of knowledge may contribute to interventions that build on women's strengths and resourcefulness.

172 citations

Journal ArticleDOI
TL;DR: An example of an implementation of a novel model-free Q-learning based discrete optimal adaptive controller for a humanoid robot arm that uses a novel adaptive dynamic programming (ADP) reinforcement learning (RL) approach to develop an optimal policy on-line.

172 citations

Book ChapterDOI
26 Sep 2016
TL;DR: This paper proposes a novel, lightweight defense based on Adaptive Padding that provides a sufficient level of security against website fingerprinting, particularly in realistic evaluation conditions.
Abstract: Website Fingerprinting attacks enable a passive eavesdropper to recover the user’s otherwise anonymized web browsing activity by matching the observed traffic with prerecorded web traffic templates. The defenses that have been proposed to counter these attacks are impractical for deployment in real-world systems due to their high cost in terms of added delay and bandwidth overhead. Further, these defenses have been designed to counter attacks that, despite their high success rates, have been criticized for assuming unrealistic attack conditions in the evaluation setting. In this paper, we propose a novel, lightweight defense based on Adaptive Padding that provides a sufficient level of security against website fingerprinting, particularly in realistic evaluation conditions. In a closed-world setting, this defense reduces the accuracy of the state-of-the-art attack from 91 % to 20 %, while introducing zero latency overhead and less than 60 % bandwidth overhead. In an open-world, the attack precision is just 1 % and drops further as the number of sites grows.

172 citations


Authors

Showing all 11918 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Hyun-Chul Kim1764076183227
David H. Adams1551613117783
Andrew White1491494113874
Kaushik De1391625102058
Steven F. Maier13458860382
Andrew Brandt132124694676
Amir Farbin131112583388
Evangelos Gazis131114784159
Lee Sawyer130134088419
Fernando Barreiro130108283413
Stavros Maltezos12994379654
Elizabeth Gallas129115785027
Francois Vazeille12995279800
Sotirios Vlachos12878977317
Network Information
Related Institutions (5)
Georgia Institute of Technology
119K papers, 4.6M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of Texas at Austin
206.2K papers, 9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202353
2022243
20211,722
20201,664
20191,493
20181,462