scispace - formally typeset
Search or ask a question
Institution

University of Toronto

EducationToronto, Ontario, Canada
About: University of Toronto is a education organization based out in Toronto, Ontario, Canada. It is known for research contribution in the topics: Population & Health care. The organization has 126067 authors who have published 294940 publications receiving 13536856 citations. The organization is also known as: UToronto & U of T.


Papers
More filters
Journal ArticleDOI
12 Dec 2017-JAMA
TL;DR: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints.
Abstract: Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

2,116 citations

Proceedings ArticleDOI
01 May 2000
TL;DR: An overview of the field of software systems requirements engineering (RE) is presented, describing the main areas of RE practice, and highlights some key open research issues for the future.
Abstract: This paper presents an overview of the field of software systems requirements engineering (RE). It describes the main areas of RE practice, and highlights some key open research issues for the future.

2,114 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: The authors align books to their movie releases to provide rich descriptive explanations for visual content that go semantically far beyond the captions available in the current datasets, and propose a context-aware CNN to combine information from multiple sources.
Abstract: Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This paper aims to align books to their movie releases in order to provide rich descriptive explanations for visual content that go semantically far beyond the captions available in the current datasets. To align movies and books we propose a neural sentence embedding that is trained in an unsupervised way from a large corpus of books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book. We propose a context-aware CNN to combine information from multiple sources. We demonstrate good quantitative performance for movie/book alignment and show several qualitative examples that showcase the diversity of tasks our model can be used for.

2,105 citations

Journal ArticleDOI
TL;DR: This work investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells and developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines.
Abstract: We investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells. We determined that transferrin-coated Au NP entered the cells via clathrin-mediated endocytosis pathway. The NPs exocytosed out of the cells in a linear relationship to size. This was different than the relationship between uptake and size. Furthermore, we developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines. These studies will provide guidelines for developing NPs for imaging and drug delivery applications, which will require "controlling" NP accumulation rate. These studies will also have implications in determining nanotoxicity.

2,099 citations

Journal ArticleDOI
Bob Holdom1
TL;DR: If new particles are gauged by a new U(1) then their electromagnetic charges may be shifted by a calculable amount as mentioned in this paper, which is the case in the case of the current article.

2,095 citations


Authors

Showing all 127245 results

NameH-indexPapersCitations
Gordon H. Guyatt2311620228631
David J. Hunter2131836207050
Rakesh K. Jain2001467177727
Thomas C. Südhof191653118007
Gordon B. Mills1871273186451
George Efstathiou187637156228
John P. A. Ioannidis1851311193612
Paul M. Thompson1832271146736
Yusuke Nakamura1792076160313
Chris Sander178713233287
David R. Williams1782034138789
David L. Kaplan1771944146082
Jasvinder A. Singh1762382223370
Hyun-Chul Kim1764076183227
Deborah J. Cook173907148928
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Stanford University
320.3K papers, 21.8M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023504
20221,822
202119,077
202017,303
201915,388
201814,130