scispace - formally typeset
Search or ask a question

Showing papers by "Waseda University published in 2011"


Journal ArticleDOI
Marcos Daniel Actis1, G. Agnetta2, Felix Aharonian3, A. G. Akhperjanian  +682 moreInstitutions (109)
TL;DR: The ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes as mentioned in this paper, which is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100GeV and above 100 TeV.
Abstract: Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

1,006 citations


Journal ArticleDOI
Seiji Kawamura1, Hiroo Kunimori2, Mizuhiko Hosokawa2, Ryuichi Fujita3, Keiichi Maeda4, Hisa-aki Shinkai5, Takahiro Tanaka6, Yaka Wakabayashi6, Hideki Ishihara7, Kazutaka Nishiyama8, Ken-ichi Ueda9, Kaiki Taro Inoue10, Kazuhiro Yamamoto8, Kunihito Ioka, Feng-Lei Hong11, Yoshiki Tsunesada12, Kenji Numata13, Masaru Shibata6, Hitoshi Kuninaka8, Kazuhiro Hayama1, Chul-Moon Yoo6, Kazuhiro Agatsuma1, Mitsuru Musha9, Shinji Miyoki14, Yasufumi Kojima15, Yumiko Ejiri16, Takamori Akiteru14, Kentaro Somiya4, Dan Chen14, Tadayuki Takahashi8, Shiho Kobayashi17, Mitsuhiro Fukushima1, Takashi Nakamura6, Naoshi Sugiyama18, Yuta Michimura14, Yoshiyuki Obuchi1, Ayaka Shoda14, Kei Kotake1, Shihori Sakata, Takeshi Chiba19, Yoichi Aso14, Shigeo Nagano2, Tomohiro Harada20, Kiwamu Izumi14, Nobuyuki Kanda7, Isao Kawano8, Nobuki Kawashima10, Yasuo Torii1, Motohiro Enoki21, Yoshiaki Himemoto19, Hirotaka Takahashi22, Yudai Suwa6, Hisashi Hirabayashi, Hiroyuki Ito2, Keitaro Takahashi18, Kiyotomo Ichiki18, Kazuhiro Nakazawa14, Morio Toyoshima2, Takashi Hiramatsu6, Hiroyuki Nakano23, Hiroyuki Koizumi8, Ke-Xun Sun24, Toshikazu Ebisuzaki, Kent Yagi6, Takeshi Ikegami11, Koji Arai25, Kouji Nakamura1, Norio Okada1, Takeshi Takashima8, Takehiko Ishikawa8, K. Okada14, Wataru Kokuyama14, Kakeru Takahashi14, Masa-Katsu Fujimoto1, Ryuichi Takahashi26, Ryo Saito14, K. Tsubono14, Osamu Miyakawa14, Ken-ichi Oohara27, Hideyuki Horisawa28, Hideharu Ishizaki1, Shigenori Moriwaki14, Norichika Sago6, Masashi Ohkawa27, Fuminobu Takahashi14, Tatsuaki Hashimoto8, Takashi Sato27, Sachiko Kuroyanagi14, Umpei Miyamoto20, Kazuaki Kuroda14, Toshifumi Futamase29, Fumiko Kawazoe, Hideyuki Tagoshi30, Yoshinori Nakayama31, Masatake Ohashi14, Yoshiharu Eriguchi14, Toshitaka Yamazaki1, Tadashi Takano19, Hiroshi Yamakawa6, Kenta Kiuchi6, Ken-ichi Nakao7, Taiga Noumi14, Kazunori Kohri, Shinichi Nakasuka14, Wataru Hikida30, Hideo Matsuhara8, Isao Naito27, Tomotada Akutsu1, Shijun Yoshida29, Nobuyuki Matsumoto14, Masa-aki Sakagami6, Naoko Ohishi1, Ikkoh Funaki8, Hajime Sotani32, Taizoh Yoshino16, Atsushi Taruya14, Mutsuko Y. Morimoto8, E. Nishida16, Atsushi J. Nishizawa6, Hideki Asada26, Toshiyuki Morisawa6, Shinji Mukohyama14, Shuichi Sato33, Keisuke Taniguchi14, Yousuke Itoh34, Shinji Tsujikawa35, Rieko Suzuki16, Keiko Kokeyama36, Misao Sasaki6, Naoki Seto6, Koji Ishidoshiro14, Ryutaro Takahashi1, Shin-ichiro Sakai8, Hiroyuki Tashiro6, Motoyuki Saijo20, Naoko Kishimoto6, Masaki Ando6, Akitoshi Ueda1, Koh-suke Aoyanagi4, Yoshihide Kozai, Masayoshi Utashima8, Yoshito Niwa14, Jun'ichi Yokoyama14, Nobuyuki Tanaka1, Akito Araya14 

614 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore how dielectric polymer composites with high thermal conductivity have been developed and explore how fillers can be used to increase the thermal conductivities of a polymer.
Abstract: The continuing miniaturization of electronic devices and the increasing power output of electrical equipment have created new challenges in packaging and insulating materials. The key goals are to develop materials with high thermal conductivity, low coefficient of thermal expansion (CTE), low dielectric con stant, high electrical resistivity, high breakdown strength, and most importantly, low cost. Polymeric materials have attracted increasing interest because of their excellent processability and low cost; however, most polymers are thermally insulating and have a thermal conductivity between 0.1 and 0.5 W-m-ι-K"1. One approach to increase the thermal conductivity of a polymer is to introduce high-thermal-conductivity fillers, such as aluminum oxide, aluminum nitride, boron nitride, silicon nitride, beryllium oxide, or diamond. In this review paper, we explore how dielectric polymer composites with high thermal conductivity have been developed.

581 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3034 moreInstitutions (179)
TL;DR: In this article, a search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented, and the data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider.

452 citations


Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3104 moreInstitutions (190)
TL;DR: In this paper, the particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transversal momentum and the charged-particle multiplicity are measured.
Abstract: Measurements are presented from proton-proton collisions at centre-of-mass energies of root s = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo (MC) models, including a new AMBT1 pythia6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the MC models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with p(T) > 100 MeV, is measured to be 3.483 +/- 0.009 (stat) +/- 0.106 (syst) at root s = 0.9 TeV and 5.630 +/- 0.003 (stat) +/- 0.169 (syst) at root s = 7 TeV.

435 citations


Journal ArticleDOI
A. A. Abdo1, Markus Ackermann2, Marco Ajello2, Alice Allafort2  +173 moreInstitutions (34)
11 Feb 2011-Science
TL;DR: Two separate gamma-ray flares from a young and energetic pulsar powers the well-known Crab Nebula are described and it is suggested that the gamma rays were emitted via synchrotron radiation from peta–electron-volt electrons in a region smaller than 1.4 × 10−2 parsecs.
Abstract: A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

395 citations


Journal ArticleDOI
TL;DR: A novel hard-templating strategy for the synthesis of mesoporous monocrystalline Pt nanoparticles (NPs) with uniform shapes and sizes and Interestingly, the Pt replicas prepared from KIT-6 showed polyhedral morphology.
Abstract: Here we report a novel hard-templating strategy for the synthesis of mesoporous monocrystalline Pt nanoparticles (NPs) with uniform shapes and sizes. Mesoporous Pt NPs were successfully prepared through controlled chemical reduction using ascorbic acid by employing 3D bicontinuous mesoporous silica (KIT-6) and 2D mesoporous silica (SBA-15) as a hard template. The particle size could be controlled by changing the reduction time. Interestingly, the Pt replicas prepared from KIT-6 showed polyhedral morphology. The single crystallinity of the Pt fcc structure coherently extended over the whole particle.

362 citations


Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +418 moreInstitutions (73)
TL;DR: In this paper, the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation was reported.
Abstract: We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Gamma = 1.78 +/- 0.02 and average photon flux F(>0.3 GeV) = (7.23 +/- 0.16) x 10(-8) ph cm(-2) s(-1). Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor similar to 3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

357 citations


Journal ArticleDOI
11 Aug 2011-Nature
TL;DR: The structure provides the first atomic-resolution picture of the centromere-specific nucleosome, and it is revealed that CENP-A contains two extra amino acid residues in the loop 1 region, which is completely exposed to the solvent.
Abstract: In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate α-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the αN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg 80 and Gly 81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.

356 citations


Journal ArticleDOI
TL;DR: In this study, three-phase composites comprising poly(vinylidene fluoride) (PVDF), barium titanate (BT) nanoparticles, and β-silicon carbide (β-SiC) whiskers were prepared and it was found that PVDF/BT/β- SiC composites show much higher dielectric constants in comparison with the PVDF/.
Abstract: Dielectric polymer composites with high dielectric constants and high thermal conductivity have many potential applications in modern electronic and electrical industry. In this study, three-phase composites comprising poly(vinylidene fluoride) (PVDF), barium titanate (BT) nanoparticles, and β-silicon carbide (β-SiC) whiskers were prepared. The superiority of this method is that, when compared with the two-phase PVDF/BT composites, three-phase composites not only show significantly increased dielectric constants but also have higher thermal conductivity. Our results show that the addition of 17.5 vol % β-SiC whiskers increases the dielectric constants of PVDF/BT nanocomposites from 39 to 325 at 1000 Hz, while the addition of 20.0 vol % β-SiC whiskers increases the thermal conductivity of PVDF/BT nanocomposites from 1.05 to 1.68 W m–1 K–1 at 25 °C. PVDF/β-SiC composites were also prepared for comparative research. It was found that PVDF/BT/β-SiC composites show much higher dielectric constants in compariso...

340 citations


Journal ArticleDOI
TL;DR: Although the photoinhibition of PSI could be induced only in specific conditions and specific plant species in intact leaves, PSI itself is quite susceptible to photoinhibited in isolated thylakoid membranes.
Abstract: The photoinhibition of Photosystem I (PSI) drew less attention compared with that of Photosystem II (PSII). This could be ascribed to several reasons, e.g. limited combinations of plant species and environmental conditions that cause PSI photoinhibition, the non-regulatory aspect of PSI photoinhibition, and methodological difficulty to determine the accurate activity of PSI under stress conditions. However, the photoinhibition of PSI could be more dangerous than that of PSII because of the very slow recovery rate of PSI. This article is intended to introduce such characteristics of PSI photoinhibition with special emphasis on the relationship between two photosystems as well as the protective mechanism of PSI in vivo. Although the photoinhibition of PSI could be induced only in specific conditions and specific plant species in intact leaves, PSI itself is quite susceptible to photoinhibition in isolated thylakoid membranes. PSI seems to be well protected from photoinhibition in vivo in many plant species and many environmental conditions. This is quite understandable because photoinhibition of PSI is not only irreversible but also the potential cause of many secondary damages. This point would be different from the case of PSII photoinhibition, which could be regarded as one of the regulatory mechanisms under stressed as well as non-stressed conditions.

Journal ArticleDOI
TL;DR: In this article, a new measurement of the inclusive forward-backward t{bar t} production asymmetry and its rapidity and mass dependence was presented, with data corresponding to an integrated luminosity of 5.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV.
Abstract: We present a new measurement of the inclusive forward-backward t{bar t} production asymmetry and its rapidity and mass dependence. The measurements are performed with data corresponding to an integrated luminosity of 5.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, recorded with the CDF II Detector at the Fermilab Tevatron. Significant inclusive asymmetries are observed in both the laboratory frame and the t{bar t} rest frame, and in both cases are found to be consistent with CP conservation under interchange of t and {bar t}. In the t{bar t} rest frame, the asymmetry is observed to increase with the t{bar t} rapidity difference, {Delta}y, and with the invariant mass M{sub t{bar t}} of the t{bar t} system. Fully corrected parton-level asymmetries are derived in two regions of each variable, and the asymmetry is found to be most significant at large {Delta}y and M{sub t{bar t}}. For M{sub t{bar t}} {ge} 450 GeV/c{sup 2}, the parton-level asymmetry in the t{bar t} rest frame is A{sup t{bar t}} = 0.475 {+-} 0.114 compared to a next-to-leading order QCD prediction of 0.088 {+-} 0.013.

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +189 moreInstitutions (37)
TL;DR: In this paper, the Fermi Large Area Telescope (LAT) was used to detect a source positionally coincident with the young supernova remnant (SNR) RX J1713.7-3946.
Abstract: We present observations of the young Supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.55$^{\circ} \pm 0.04^{\circ}$ matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allows us to identify the LAT source with the supernova remnant RX J1713.7-3946. The spectrum of the source can be described by a very hard power-law with a photon index of $\Gamma = 1.5 \pm 0.1$ that coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.

Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, Alice Allafort1, Luca Baldini2  +160 moreInstitutions (35)
25 Nov 2011-Science
TL;DR: The Fermi Large Area Telescope has observed the star-forming region of Cygnus X and reveals a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters.
Abstract: The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population.

Journal ArticleDOI
TL;DR: In this paper, a facile method to synthesize large yields of nanorods is proposed, which is a key factor in reducing the cost of products in thick film gas sensor technology.
Abstract: The synthesis of crystalline nanorod metal oxides with porous structure is an important issue in gas sensor technology, which aims to increase their sensitivity and stability. In addition, the development of a facile method to synthesize large yields of nanorods is a key factor in reducing the cost of products in thick film gas sensor technology. Large yields of crystalline meso-/macroporous Co3O4 nanorods are fabricated using facile hydrothermal method from CoCl2 and urea precursors, without using any surfactants or template-directing agents. The gas-sensing properties of synthesized nanorods are tested to volatile organic compounds (VOCs) such as benzene, acetone, and ethanol. Results reveal that crystalline meso- and macroporous Co3O4 nanorods have the highest sensitivity to acetone with a fast response and a recovery time of one minute. Moreover, the sensing properties of crystalline meso-/macroporous Co3O4 nanorods depend strongly on carrier (reference) gases, whereas preadsorbed oxygen plays an impo...

Journal ArticleDOI
TL;DR: In this article, the authors presented a new result based on an analysis of the data collected by the MEG detector at the Paul Scherrer Institut in 2009 and 2010, in search of the lepton-flavor-violating decay.
Abstract: We present a new result based on an analysis of the data collected by the MEG detector at the Paul Scherrer Institut in 2009 and 2010, in search of the lepton-flavor-violating decay ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\gamma}$. The likelihood analysis of the combined data sample, which corresponds to a total of $1.8\ifmmode\times\else\texttimes\fi{}{10}^{14}$ muon decays, gives a 90% C.L. upper limit of $2.4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}12}$ on the branching ratio of the ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\gamma}$ decay, constituting the most stringent limit on the existence of this decay to date.

Journal ArticleDOI
TL;DR: In this article, a polyvinylpyrrolidone (PVP) based aqueous solution was used for the synthesis of multilayered metallic nano-architectures.
Abstract: Our recent study has shown that Pluronic F127 triblock copolymer can assist the formation of unique Au@Pd@Pt triple-layered core−shell-structured nanoparticles consisting of a Au core, a Pd inner layer, and nanoporous Pt outer shell (J. Am. Chem. Soc.2010, 132, 13636). Pluronic F127 is a very typical surfactant that is commonly used in the synthesis of mesoporous silica and carbon, but Pluronic F127 is very rarely used for the synthesis of metallic nanostructures. Herein, we expand our previous concept to further demonstrate that such interesting Au@Pd@Pt nanoparticles can be easily synthesized by using poly(vinylpyrrolidone) (PVP) instead of Pluronic F127. PVP is a very typical capping and structure-directing agent used for the synthesis of various metallic nanostructures. The present synthetic route using a PVP-based aqueous solution will greatly contribute to the further design of multilayered metallic nanoarchitectures with designed compositions and desired functions. Furthermore, a detailed investiga...

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +471 moreInstitutions (82)
TL;DR: In this paper, the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation was reported, and it was shown that the energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3GeV-10TeV, with spectral indices 2.2 and 2.20.
Abstract: We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average LAT gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of 2), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3GeV. In this paper, we also present the first results from the 4.5-month-long multifrequency campaign (2009 March 15 - August 1) on Mrk 501, which included the VLBA, Swift, RXTE, MAGIC and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton model. In the framework of this model, we find that the dominant emission region is characterized by a size <~ 0.1 pc (comparable within a factor of few to the size of the partially-resolved VLBA core at 15-43 GHz), and that the total jet power (~10^{44} erg s^{-1}) constitutes only a small fraction (~10^{-3}) of the Eddington luminosity. The energy distribution of the freshly-accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3GeV-10TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks.

Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +182 moreInstitutions (34)
TL;DR: The flat-spectrum radio quasar 3C454.3 underwent an extraordinary 5-day γ-ray outburst in 2010 November when the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E > 100 MeV reached (66 ± 2) × 10−6 photons cm−2 s−1, which is a factor of three higher than its previous maximum flux recorded in 2009 December and 5 times brighter than the Vela pulsar as mentioned in this paper.
Abstract: The flat-spectrum radio quasar 3C454.3 underwent an extraordinary 5 day γ -ray outburst in 2010 November when the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E > 100 MeV reached (66 ± 2) × 10−6 photons cm−2 s−1. This is a factor of three higher than its previous maximum flux recorded in 2009 December and 5 times brighter than the Vela pulsar, which is normally the brightest source in the γ -ray sky. The 3 hr peak flux was (85 ± 5)×10−6 photons cm−2 s−1, corresponding to an apparent isotropic luminosity of (2.1 ± 0.2)×1050 erg s−1, the highest ever recorded for a blazar. In this Letter, we investigate the features of this exceptional event in the γ -ray band of the Fermi-LAT. In contrast to previous flares of the same source observed with the Fermi-LAT, clear spectral changes are observed during the flare.

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +448 moreInstitutions (49)
TL;DR: In this article, the transverse momentum spectra of electrons from semileptonic weak decays of heavy-flavor mesons in the range of 0.3 < p(T)(e) < 9.0 GeV/c was measured at midrapidity (|y| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p + p and Au + Au collisions at root s(NN) = 200 GeV.
Abstract: Transverse momentum spectra of electrons (p(T)(e)) from semileptonic weak decays of heavy-flavor mesons in the range of 0.3 < p(T)(e) < 9.0 GeV/c have been measured at midrapidity (|y| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p + p and Au + Au collisions at root s(NN) = 200 GeV. In addition, the azimuthal anisotropy parameter v(2) has been measured for 0.3 < p(T)(e) < 5.0 GeV/c in Au + Au collisions. The substantial modification in the p(T)(e) spectra in Au + Au compared with p + p collisions as well as the nonzero v(2) indicate substantial interactions and flow of heavy quarks in traversing the produced medium. Comparisons of these observables with detailed theoretical calculations can be used to identify the nature of these interactions and to quantify their extent.

Journal ArticleDOI
D. Aad1, D. Aad2, Brad Abbott1, Brad Abbott3  +5600 moreInstitutions (187)
TL;DR: In this article, measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at root s = 7 TeV are presented, independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background.
Abstract: Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at root s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of mu, the average number of inelastic interactions per bunch crossing. Residual time- and mu-dependence between the methods is less than 2% for 0 < mu < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have a common systematic uncertainty of +/- 11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most +/- 2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.

Journal ArticleDOI
TL;DR: The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K-S(0), omega, eta', and phi mesons in p + p collisions at root s 200 GeV as discussed by the authors.
Abstract: The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K-S(0), omega, eta', and phi mesons in p + p collisions at root s 200 GeV. Measurements of omega and phi production in different decay channels give consistent results. New results for the omega are in agreement with previously published data and extend the measured p(T) coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-p(T) and characterizing the low-p(T) regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.

Journal ArticleDOI
TL;DR: A space–time version of the residual-based variational multiscale method is introduced, and a stability and accuracy analysis for the higher-accuracy versions of the DSD/SST formulation is presented.
Abstract: We present the multiscale space---time techniques we have developed for fluid---structure interaction (FSI) computations. Some of these techniques are multiscale in the way the time integration is performed (i.e. temporally multiscale), some are multiscale in the way the spatial discretization is done (i.e. spatially multiscale), and some are in the context of the sequentially-coupled FSI (SCFSI) techniques developed by the Team for Advanced Flow Simulation and Modeling $${({\rm T} \bigstar {\rm AFSM})}$$ . In the multiscale SCFSI technique, the FSI computational effort is reduced at the stage we do not need it and the accuracy of the fluid mechanics (or structural mechanics) computation is increased at the stage we need accurate, detailed flow (or structure) computation. As ways of increasing the computational accuracy when or where needed, and beyond just increasing the mesh refinement or decreasing the time-step size, we propose switching to more accurate versions of the Deforming-Spatial-Domain/Stabilized Space---Time (DSD/SST) formulation, using more polynomial power for the basis functions of the spatial discretization or time integration, and using an advanced turbulence model. Specifically, for more polynomial power in time integration, we propose to use NURBS, and as an advanced turbulence model to be used with the DSD/SST formulation, we introduce a space---time version of the residual-based variational multiscale method. We present a number of test computations showing the performance of the multiscale space---time techniques we are proposing. We also present a stability and accuracy analysis for the higher-accuracy versions of the DSD/SST formulation.

Journal ArticleDOI
A. Adare1, S. Afanasiev2, Christine Angela Aidala3, N. N. Ajitanand4  +386 moreInstitutions (54)
TL;DR: The ν(n) is reported as a function of transverse momentum and collision centrality, and the correlations among the event planes of different order n are studied to improve the precision of the extracted shear viscosity to entropy density ratio η/s.
Abstract: Flow coefficients nu(n) for n = 2, 3, 4, characterizing the anisotropic collective flow in Au + Au collisions at root s(NN) = 200 GeV, are measured relative to event planes Psi(n), determined at large rapidity We report nu(n) as a function of transverse momentum and collision centrality, and study the correlations among the event planes of different order n The nu(n) are well described by hydrodynamic models which employ a Glauber Monte Carlo initial state geometry with fluctuations, providing additional constraining power on the interplay between initial conditions and the effects of viscosity as the system evolves This new constraint can serve to improve the precision of the extracted shear viscosity to entropy density ratio eta/s

Journal ArticleDOI
Markus Ackermann1, Marco Ajello1, Katsuaki Asano2, Magnus Axelsson3  +213 moreInstitutions (41)
TL;DR: In this article, the gamma-ray burst of GRB 090926A was observed by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-Ray Space Telescope.
Abstract: We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.

Journal ArticleDOI
TL;DR: In this article, the authors reported the preparation of microporous carbon fibers through carbonization of an Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol (FA) at 1000 °C under an inert gas atmosphere.
Abstract: Here, we report preparation of microporous carbon fibers through carbonization of an Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol (FA) at 1000 °C under an inert gas atmosphere. During the carbonization process, the Al species are aggregated to form γ-alumina nanoparticles. After the carbonization, the γ-alumina nanoparticles (from 2 to 10 nm) are distributed over the entire area. By chemical treatment with HF, the γ-alumina nanoparticles can be easily removed to obtain pure microporous carbon. Interestingly, the fibrous morphology of the original Al-PCP is successfully retained after the carbonization process. The effect of the loading amount of FA into the porous networks of Al-PCP on properties of the obtained microporous carbon is carefully examined. From the N2 adsorption−desorption isotherms, an increase in the BET surface area upon increasing the loading amount of FA is observed. The maximum surface area and pore volume of the obtained microporous carbon reach 513 m2/g and 0.8...

Journal ArticleDOI
TL;DR: In this article, the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) was used to measure the transverse momentum distributions and yields for pi(+/-), K-+/-, p, and (p) over bar in p + p collisions.
Abstract: Transverse momentum distributions and yields for pi(+/-), K-+/-, p, and (p) over bar in p + p collisions at root s = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data provide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter T-inv, mean transverse momentum , and yield per unit rapidity dN/dy at each energy, and compare them to other measurements at different root s in p + p and p + (p) over bar collisions. We also present the scaling properties such as m(T) scaling and x(T) scaling on the p(T) spectra between different energies. To discuss the mechanism of the particle production in p + p collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.

Journal ArticleDOI
TL;DR: A symmetric confi guration (poleless battery) composed of poly(nitronylnitroxylstyrene) as the bipolar (pand n-dopable) electrode-active material and a poleless battery confiGuration is curious in the interest of simplifying.
Abstract: pand n-Type bipolar organic polymers have attracted remarkable interest in the development of organic-based devices, such as organic light-emitting diodes, organic thin-fi lm transistors, and photovoltaics, because they allow the proper balance of holeand electron-conduction and simplifi cation of device structure. [ 1 ] Bipolarity is mostly carried on separate donor and acceptor sites and a few exceptions are pand n-doped polythiophenes. [ 2 ] Insuffi cient stability of the n-doped state has limited the exploration of bipolar redox-active polymers, which are even accompanied by counterion migration. Stoichiometric bipolar redox activity for charge storage (long term) is challenging, but here we achieved three redox states (n-doped, neutral, and p-doped states) via judicious molecular design of the organic polymers. Recently, we successfully utilized redox polymers bearing robust, redox-active radical pendant groups, such as 2,2,6,6-tetramethylpiperidinyl-oxy (TEMPO) (p-type) [ 3 ] and galvinoxyl (n-type), [ 4 ] as cathodeand anode-active materials, respectively, and demonstrated high power rate capability in a totally organic-based rechargeable battery. We also reported either por n-type redox activity of poly(nitroxylstyrene) switched with substituent electronic effects, [ 5 ] however, these radical polymers did not show any bipolar redox activity, which is even more challenging than n-type redox activity. [ 6 ] Here we focus on redox reactions of nitronylnitroxide ( Figure 1 a ), [ 7 ] stabilized by the conjugated structure of two NO sites and by tuning the electrolyte conditions and report for the fi rst time poly(nitronylnitroxylstyrene) as the bipolar (pand n-dopable) electrode-active material. In this report, we construct two unprecedented battery confi gurations: a) a symmetric confi guration (poleless battery) composed of poly(nitronylnitroxylstyrene) 1 for both electrodes and b) a both n-type electrode confi guration (“rocking-chair-type”) utilizing poly(nitronylnitroxylstyrene) 1 and poly(galvinoxylstyrene) 2 [ 4 ] as the anodeand the cathode-active materials, respectively. A poleless battery confi guration is curious in the interest of simplifying

Journal ArticleDOI
TL;DR: The potentially tunable bandgaps of the B–C–N system will enable its outstanding functional fl exibility in luminescence and electronics, providing a smart approach to semiconductivity.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah, A. A. Abdelalim3  +3042 moreInstitutions (179)
TL;DR: In this paper, the cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton proton collisions at root s = 7 TeV with the ATLAS detector at the LHC, using 2.3 pb(-1) of integrated luminosity.