scispace - formally typeset
Search or ask a question

Showing papers in "Boundary-Layer Meteorology in 2011"


Journal ArticleDOI
TL;DR: In this paper, a tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrisation of the SGS stresses, and the turbine-induced forces (e.g., thrust, lift and drag) are parametrised using two models: (a) the standard actuator-disk model (ADM-NR), which calculates only the thrust force and distributes it uniformly over the rotor area; and (b) the actuatordisk model with rotation, which uses the blade-element theory to
Abstract: Large-eddy simulation (LES), coupled with a wind-turbine model, is used to investigate the characteristics of a wind-turbine wake in a neutral turbulent boundary-layer flow. The tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrisation of the SGS stresses. The turbine-induced forces (e.g., thrust, lift and drag) are parametrised using two models: (a) the ‘standard’ actuator-disk model (ADM-NR), which calculates only the thrust force and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses the blade-element theory to calculate the lift and drag forces (that produce both thrust and rotation), and distribute them over the rotor disk based on the local blade and flow characteristics. Simulation results are compared to high-resolution measurements collected with hot-wire anemometry in the wake of a miniature wind turbine at the St. Anthony Falls Laboratory atmospheric boundary-layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements in the far-wake region. The ADM-R yields improved predictions compared with the ADM-NR in the near-wake region, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces appear to be important. Our results also show that the Lagrangian scale-dependent dynamic SGS model is able to account, without any tuning, for the effects of local shear and flow anisotropy on the distribution of the SGS model coefficient.

528 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared five planetary boundary-layer (PBL) parametrizations in the Weather Research and Forecasting (WRF) numerical model for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program.
Abstract: This study compares five planetary boundary-layer (PBL) parametrizations in the Weather Research and Forecasting (WRF) numerical model for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program. The five schemes include two first-order closure schemes—the Yonsei University (YSU) PBL and Asymmetric Convective Model version 2 (ACM2), and three turbulent kinetic energy (TKE) closure schemes—the Mellor–Yamada–Janjic (MYJ), quasi-normal scale elimination (QNSE), and Bougeault–Lacarrere (BouLac) PBL. The comparison results reveal that discrepancies among thermodynamic surface variables from different schemes are large at daytime, while the variables converge at nighttime with large deviations from those observed. On the other hand, wind components are more divergent at nighttime with significant biases. Regarding PBL structures, a non-local scheme with the entrainment flux proportional to the surface flux is favourable in unstable conditions. In stable conditions, the local TKE closure schemes show better performance. The sensitivity of simulated variables to surface-layer parametrizations is also investigated to assess relative contributions of the surface-layer parametrizations to typical features of each PBL scheme. In the surface layer, temperature and moisture are more strongly influenced by surface-layer formulations than by PBL mixing algorithms in both convective and stable regimes, while wind speed depends on vertical diffusion formulations in the convective regime. Regarding PBL structures, surface-layer formulations only contribute to near-surface variability and then PBL mean properties, whereas shapes of the profiles are determined by PBL mixing algorithms.

319 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS).
Abstract: We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today’s numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.

201 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of atmospheric stability on the turbulent transport of momentum and scalars (water vapour and temperature) in the neutral and unstable atmospheric surface layers over a lake and a vineyard.
Abstract: Atmospheric stability effects on the dissimilarity between the turbulent transport of momentum and scalars (water vapour and temperature) are investigated in the neutral and unstable atmospheric surface layers over a lake and a vineyard. A decorrelation of the momentum and scalar fluxes is observed with increasing instability. Moreover, different measures of transport efficiency (correlation coefficients, efficiencies based on quadrant analysis and bulk transfer coefficients) indicate that, under close to neutral conditions, momentum and scalars are transported similarly whereas, as the instability of the atmosphere increases, scalars are transported increasingly more efficiently than momentum. This dissimilarity between the turbulent transport of momentum and scalars under unstable conditions concurs with, and is likely caused by, a change in the topology of turbulent coherent structures. Previous laboratory and field studies report that under neutral conditions hairpin vortices and hairpin packets are present and dominate the vertical fluxes, while under free-convection conditions thermal plumes are expected. Our results (cross-stream vorticity variation, quadrant analysis and time series analysis) are in very good agreement with this picture and confirm a change in the structure of the coherent turbulent motions under increasing instability, although the exact structure of these motions and how they are modified by stability requires further investigation based on three-dimensional flow data.

184 citations


Journal ArticleDOI
TL;DR: In this paper, a blind comparison of microscale flow models was conducted for a blind measurement of the Bolund measurements, including large-eddy simulation (LES) models, Reynolds-averaged Navier-Stokes (RANS), and linearized models, in addition to wind-tunnel and water-channel experiments.
Abstract: Bolund measurements were used for a blind comparison of microscale flow models. Fifty-seven models ranging from numerical to physical were used, including large-eddy simulation (LES) models, Reynolds-averaged Navier–Stokes (RANS) models, and linearized models, in addition to wind-tunnel and water-channel experiments. Many assumptions of linearized models were violated when simulating the flow around Bolund. As expected, these models showed large errors. Expectations were higher for LES models. However, of the submitted LES results, all had difficulties in applying the specified boundary conditions and all had large speed-up errors. In contrast, the physical models both managed to apply undisturbed ‘free wind’ boundary conditions and achieve good speed-up results. The most successful models were RANS with two-equation closures. These models gave the lowest errors with respect to speed-up and turbulent kinetic energy (TKE) prediction.

173 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an analysis of data from a measurement campaign performed at the Bolund peninsula in Denmark in the winter of 2007-2008, where the incoming flow is characterized as flow over flat terrain with a local roughness height based on the surface momentum flux.
Abstract: We present an analysis of data from a measurement campaign performed at the Bolund peninsula in Denmark in the winter of 2007–2008. Bolund is a small isolated hill exhibiting a significantly steep escarpment in the main wind direction. The physical shape of Bolund represents, in a scaled-down form, a typical wind turbine site in complex terrain. Because of its small size the effect of atmospheric stratification can be neglected, which makes the Bolund experiment ideal for the validation of neutral flow models and hence model scenarios most relevant to wind energy. We have carefully investigated the upstream conditions. With a 7-km fetch over water, the incoming flow is characterized as flow over flat terrain with a local roughness height based on the surface momentum flux. The nearly perfect upstream conditions are important in forming a meaningful quantitative description of the flow over the Bolund hill. Depending on the wind direction, we find a maximum speed-up of 30% at the hill top accompanied by a maximum 300% enhancement of turbulence intensity. A closer inspection reveals transient behaviour with recirculation zones. From the wind energy context, this implies that the best site for erecting a turbine based on resource constraints unfortunately also imposes a penalty of high dynamic loads. On the lee side of Bolund, recirculation occurs with the turbulence intensity remaining significantly enhanced even at one hill length downstream. Its transient behaviour and many recirculation zones place Bolund in a category in which the linear flow theory is not applicable.

160 citations


Journal ArticleDOI
TL;DR: In this article, the authors performed direct numerical simulation of a turbulent open channel flow with a constant (cooling) heat flux imposed at the ground and provided a simplified model for the surface layer at night.
Abstract: The nocturnal atmospheric boundary layer (ABL) poses several challenges to standardturbulenceanddispersionmodels,sincethestablestratificationimposedbytheradi- ative cooling of the ground modifies the flow turbulence in ways that are not yet completely understood In the present work we perform direct numerical simulation of a turbulent open channel flow with a constant (cooling) heat flux imposed at the ground This configuration provides a very simplified model for the surface layer at night As a result of the ground cool- ing, the Reynolds stresses and the turbulent fluctuations near the ground re-adjust on times of the order of L/uτ ,w hereL is the Obukhov length scale and uτ is the friction velocity For relatively weak cooling turbulence survives, but when ReL = Luτ /ν 100 turbulence collapses, a situation that is also observed in the ABL This criterion, which can be locally measured in the field, is justified in terms of the scale separation between the largest and smallest structures of the dynamic sublayer

117 citations


Journal ArticleDOI
TL;DR: In this paper, the fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel and the results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions.
Abstract: The fundamental properties of turbulent flow around a perfectly staggered wind farm are investigated in a wind tunnel. The wind farm consisted of a series of 10 rows by 2–3 columns of miniature wind turbines spaced 5 and 4 rotor diameters in the streamwise and spanwise directions respectively. It was placed in a boundary-layer flow developed over a smooth surface under thermally neutral conditions. Cross-wire anemometry was used to obtain high resolution measurements of streamwise and vertical velocity components at various locations within and above the wind farm. The results show that the staggered configuration is more efficient in terms of momentum transfer from the background flow to the turbines compared to the case of an aligned wind turbine array under similar turbine separations in the streamwise and spanwise directions. This leads to improved power output of the overall wind farm. A simplified analysis suggests that the difference in power output between the two configurations is on the order of 10%. The maximum levels of turbulence intensity in the staggered wind farm were found to be very similar to that observed in the wake of a single wind turbine, differing substantially with that observed in an aligned configuration with similar spacing. The dramatic changes in momentum and turbulence characteristics in the two configurations show the importance of turbine layout in engineering design. Lateral homogenization of the turbulence statistics above the wind farm allows for the development of simple parametrizations for the adjustment of flow properties, similar to the case of a surface roughness transition. The development of an internal boundary layer was observed at the upper edge of the wind farm within which the flow statistics are affected by the superposition of the ambient flow and the flow disturbance induced by the wind turbines. The adjustment of the flow in this layer is much slower in the staggered situation (with respect to its aligned counterpart), implying a change in the momentum/power available at turbine locations. Additionally, power spectra of the streamwise and vertical velocity components indicate that the signature of each turbine-tip vortex structure persists to locations deep within the wind farm.

111 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate the annual variability of convective boundary-layer depth and its correlation to meteorological parameters and conditions, including solar radiation, precipitation and synoptic-scale subsidence.
Abstract: One year of observations from a network of five 915-MHz boundary-layer radar wind profilers equipped with radio acoustic sounding systems located in California’s Central Valley are used to investigate the annual variability of convective boundary-layer depth and its correlation to meteorological parameters and conditions. Results from the analysis show that at four of the sites, the boundary-layer height reaches its maximum in the late-spring months then surprisingly decreases during the summer months, with mean July depths almost identical to those for December. The temporal decrease in boundary-layer depth, as well as its spatial variation, is found to be consistent with the nocturnal low-level lapse rate observed at each site. Multiple forcing mechanisms that could explain the unexpected seasonal behaviour of boundary-layer depth are investigated, including solar radiation, precipitation, boundary-layer mesoscale convergence, low-level cold-air advection, local surface characteristics and irrigation patterns and synoptic-scale subsidence. Variations in solar radiation, precipitation and synoptic-scale subsidence do not explain the shallow summertime convective boundary-layer depths observed. Topographically forced cold-air advection and local land-use characteristics can help explain the shallow CBL depths at the four sites, while topographically forced low-level convergence helps maintain larger CBL depths at the fifth site near the southern end of the valley.

97 citations


Journal ArticleDOI
TL;DR: In this paper, wind-tunnel experiments were conducted on seven types of urban building arrays with various roughness packing densities to measure the bulk drag coefficient and mean wind profile; aerodynamic parameters such as roughness length and displacement height were also estimated.
Abstract: It is difficult to describe the flow characteristics within and above urban canopies using only geometrical parameters such as plan area index (λ p ) and frontal area index (λ f ) because urban surfaces comprise buildings with random layouts, shapes, and heights. Furthermore, two types of ‘randomness’ are associated with the geometry of building arrays: the randomness of element heights (vertical) and that of the rotation angles of each block (horizontal). In this study, wind-tunnel experiments were conducted on seven types of urban building arrays with various roughness packing densities to measure the bulk drag coefficient (C d ) and mean wind profile; aerodynamic parameters such as roughness length (z o ) and displacement height (d) were also estimated. The results are compared with previous results from regular arrays having neither ‘vertical’ nor ‘horizontal’ randomness. In vertical random arrays, the plot of C d and z o versus λ f exhibited a monotonic increase, and z o increased by a factor of almost two for λ f = 48–70%. C d was strongly influenced by the standard deviation of the height of blocks (σ) when λ p ≥ 17%, whereas C d was independent of σ when λ p = 7%. In the case of horizontal random arrays, the plot of the estimated C d against λ f showed a peak. The effect of both vertical and horizontal randomness of the layout on aerodynamic parameters can be explained by the structure of the vortices around the blocks; the aspect ratio of the block is an appropriate index for the estimation of such features.

97 citations


Journal ArticleDOI
TL;DR: In this paper, a large-eddy simulation (LES) was conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1.
Abstract: Large-eddy simulation (LES) is conducted to investigate the mechanism of pollutant removal from a two-dimensional street canyon with a building-height to street-width (aspect) ratio of 1. A pollutant is released as a ground-level line source at the centre of the canyon floor. The mean velocities, turbulent fluctuations, and mean pollutant concentration estimated by LES are in good agreement with those obtained by wind-tunnel experiments. Pollutant removal from the canyon is mainly determined by turbulent motions, except in the adjacent area to the windward wall. The turbulent motions are composed of small vortices and small-scale coherent structures of low-momentum fluid generated close to the plane of the roof. Although both small vortices and small-scale coherent structures affect pollutant removal, the pollutant is largely emitted from the canyon by ejection of low-momentum fluid when the small-scale coherent structures appear just above the canyon where the pollutant is retained. Large-scale coherent structures also develop above the canyon, but they do not always affect pollutant removal.

Journal ArticleDOI
TL;DR: In this paper, the authors estimate the dependence of the aerodynamic roughness length and zero-plane displacement for idealized urban surfaces, on the two most significant geometrical characteristics; surface area density and building height variability.
Abstract: There are many geometrical factors than can influence the aerodynamic parameters of urban surfaces and hence the vertical wind profiles found above The knowledge of these parameters has applications in numerous fields, such as dispersion modelling, wind loading calculations, and estimating the wind energy resource at urban locations Using quasi-empirical modelling, we estimate the dependence of the aerodynamic roughness length and zero-plane displacement for idealized urban surfaces, on the two most significant geometrical characteristics; surface area density and building height variability A validation of the spatially-averaged, logarithmic wind profiles predicted by the model is carried out, via comparisons with available wind-tunnel and numerical data for arrays of square based blocks of uniform and heterogeneous heights The model predicts two important properties of the aerodynamic parameters of surfaces of heterogeneous heights that have been suggested by experiments Firstly, the zero-plane displacement of a heterogeneous array can exceed the surface mean building height significantly Secondly, the characteristic peak in roughness length with respect to surface area density becomes much softer for heterogeneous arrays compared to uniform arrays, since a variation in building height can prevent a skimming flow regime from occurring Overall the simple model performs well against available experimental data and may offer more accurate estimates of surface aerodynamic parameters for complex urban surfaces compared to models that do not include height variability

Journal ArticleDOI
TL;DR: In this article, a large-eddy simulation (LES) model was developed to study the flow and pollutant transport in and above urban street canyons, where three identical two-dimensional (2D) street canYons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x.
Abstract: A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. Theflow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard devi- ations σi in the streamwise (σu), spanwise (σv) and vertical (σw) directions are located near the roof-level windward corners. Moreover, a second σw peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σi by the local friction velocity u∗ ,i t is found that σu/u∗ ≈ 1.8, σv/u∗ ≈ 1. 3a ndσw/u∗ ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u �� w �� shows that, while the inward and outward interactions are small, the sweeps and ejections dominate themomentumtransportoverthestreetcanyons.Inthe x direction,thetwo-pointcorrelations of velocity Rv,x and Rw,x drop to zero at a separation larger than h but Ru,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient � T of pollutant into its removal and re-entry components, an increasing pollutant re-entrain- ment from 26. 3t o 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons.

Journal ArticleDOI
TL;DR: In this article, a scheme that couples a detailed building energy model, EnergyPlus, and an urban canopy model, the Town Energy Balance (TEB), is presented, which allows a broader analysis of the two-way interactions between the energy performance of buildings and the urban climate around the buildings.
Abstract: A scheme that couples a detailed building energy model, EnergyPlus, and an urban canopy model, the Town Energy Balance (TEB), is presented. Both models are well accepted and evaluated within their individual scientific communities. The coupled scheme proposes a more realistic representation of buildings and heating, ventilation and air-conditioning (HVAC) systems, which allows a broader analysis of the two-way interactions between the energy performance of buildings and the urban climate around the buildings. The scheme can be used to evaluate the building energy models that are being developed within the urban climate community. In this study, the coupled scheme is evaluated using measurements conducted over the dense urban centre of Toulouse, France. The comparison includes electricity and natural gas energy consumption of buildings, building facade temperatures, and urban canyon air temperatures. The coupled scheme is then used to analyze the effect of different building and HVAC system configurations on building energy consumption, waste heat released from HVAC systems, and outdoor air temperatures for the case study of Toulouse. Three different energy efficiency strategies are analyzed: shading devices, economizers, and heat recovery.

Journal ArticleDOI
TL;DR: In this paper, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy, and the relation of the flux events to small-scale increases of wind speed is examined.
Abstract: For the near-calm stable boundary layer, nominally 2-m mean wind speed <0.5 ms−1, the time-average turbulent flux is dominated by infrequent mixing events. These events are related to accelerations associated with wave-like motions and other more complex small-scale motions. In this regime, the relationship between the fluxes and the weak mean flow breaks down. Such near-calm conditions are common at some sites. For very weak winds and strong stratification, the characteristics of the fluctuating quantities change slowly with increasing scale and the separation between the turbulence and non-turbulent motions can become ambiguous. Therefore, a new analysis strategy is developed based on the scale dependence of selected flow characteristics, such as the ratio of the fluctuating potential energy to the kinetic energy. In contrast to more developed turbulence, correlations between fluctuating quantities are small, and a significant heat flux is sometimes carried by very weak vertical motions with large temperature fluctuations. The relation of the flux events to small-scale increases of wind speed is examined. Large remaining uncertainties are noted.

Journal ArticleDOI
TL;DR: In this paper, a spatially-analytical approach is proposed to model the temperature field and conductive heat fluxes analytically in space, where the numerical oscillations due to temperature discontinuities at the sublayer interfaces can be avoided since the method does not involve spatial discretisation.
Abstract: In the urban environment, surface temperatures and conductive heat fluxes through solid media (roofs, walls, roads and vegetated surfaces) are of paramount importance for the comfort of residents (indoors) and for microclimatic conditions (outdoors). Fully discrete numerical methods are currently used to model heat transfer in these solid media in parametrisations of built surfaces commonly used in weather prediction models. These discrete methods usually use finite difference schemes in both space and time. We propose a spatially-analytical scheme where the temperature field and conductive heat fluxes are solved analytically in space. Spurious numerical oscillations due to temperature discontinuities at the sublayer interfaces can be avoided since the method does not involve spatial discretisation. The proposed method is compared to the fully discrete method for a test case of one-dimensional heat conduction with sinusoidal forcing. Subsequently, the analytical scheme is incorporated into the offline version of the current urban canopy model (UCM) used in the Weather Research and Forecasting model and the new UCM is validated against field measurements using a wireless sensor network and other supporting measurements over a suburban area under real-world conditions. Results of the comparison clearly show the advantage of the proposed scheme over the fully discrete model, particularly for more complicated cases.

Journal ArticleDOI
Jeremy D. Price1
TL;DR: In this paper, data from several cases of radiation fog occurring at the Met Office field site at Cardington, Bedfordshire, UK have been analyzed with a view to elucidating the typical evolution in its static stability from formation to dissipation.
Abstract: Data from several cases of radiation fog occurring at the Met Office field site at Cardington, Bedfordshire, UK have been analyzed with a view to elucidating the typical evolution in its static stability from formation to dissipation Typically the early stages of radiation fog are characterized by a stable thermal profile and a relatively shallow depth However, when the fog reached approximately 100 m depth it was observed to become optically thick (to longwave radiation), with a subsequent change over several hours to a saturated adiabatic stability profile At this time turbulence levels were seen to increase significantly The mechanisms involved appear to be radiative cooling from fog top and a positive heat flux to the atmosphere from the soil The importance of this change in stability for numerical modelling of fog episodes is discussed Several case studies are made to gain some insight into how common this transition is Droplet spectra were measured at 2-m height for many of the cases considered, and their evolution is discussed It is found that distributions fall into an initial phase with small drop sizes (approximately ≤ 10 μm diameter) and concentration, and a mature phase with the appearance of much larger drop sizes with a mean diameter of approximately 15−20 μm It is found that the appearance of the mature phase does not coincide with the change in stability from stable to saturated adiabatic, but there is some evidence that once a saturated adiabatic profile is established, the droplet spectra variations are significantly less than for the stable period The observed evolution of these spectra brings into question the suitability of microphysical schemes that assume constant spectral shape, drop diameter, and number density

Journal ArticleDOI
TL;DR: In this paper, a novel approach for the Reynolds-averaged Navier-Stokes (RANS) modelling of the neutral atmospheric boundary layer (ABL), using the standard k-varepsilon turbulence model, is presented.
Abstract: We report on a novel approach for the Reynolds-averaged Navier-Stokes (RANS) modelling of the neutral atmospheric boundary layer (ABL), using the standard \(k-{\varepsilon}\) turbulence model. A new inlet condition for turbulent kinetic energy is analytically derived from the solution of the \(k-{\varepsilon}\) model transport equations, resulting in a consistent set of fully developed inlet conditions for the neutral ABL. A modification of the standard \(k-{\varepsilon}\) model is also employed to ensure consistency between the inlet conditions and the turbulence model. In particular, the turbulence model constant Cμ is generalized as a location-dependent parameter, and a source term is introduced in the transport equation for the turbulent dissipation rate. The application of the proposed methodology to cases involving obstacles in the flow is made possible through the implementation of an algorithm, which automatically switches the turbulence model formulation when going from the region where the ABL is undisturbed to the region directly affected by the building. Finally, the model is completed with a slightly modified version of the Richards and Hoxey rough-wall boundary condition. The methodology is implemented and tested in the commercial code Ansys Fluent 12.1. Results are presented for a neutral boundary layer over flat terrain and for the flow around a single building immersed in an ABL.

Journal ArticleDOI
TL;DR: In this article, the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence were investigated for urban climate in Japan using a Comprehensive Outdoor Scale MOdel (COSMO) experiment.
Abstract: We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.

Journal ArticleDOI
TL;DR: In this article, the dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like obstacles is investigated by means of direct numerical simulations.
Abstract: The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0°, 30°, 45°). The results agree well with available experimental data measured in a water channel for a flow angle of 0°. Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays.

Journal ArticleDOI
TL;DR: In this article, the entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar.
Abstract: The entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar. It is possible to observe different individual processes entraining air into the turbulent layer, which develop with varying stability of the free atmosphere. These different processes are attended by different entrainment-zone thicknesses and entrainment velocities. Four classes of entrainment parametrizations, which describe relationships between the fundamental parameters of the process, are examined. Existing relationships between entrainment-zone thickness and entrainment velocity are basically confirmed using as scaling parameters boundary-layer height and convective velocity. An increase in the correlation coefficient between stability parameters based on the stratification of the free atmosphere and entrainment velocity (and entrainment-zone thickness respectively) up to 200% was possible using more suitable length and velocity scales.

Journal ArticleDOI
TL;DR: In this paper, a model of the marine near-surface air boundary layer (MABL) in conditions of very high (hurricane) wind speeds is investigated, based on the classical theory of the motion of suspended particles in a turbulent flow, where the mass concentration of droplets is not mandatory small.
Abstract: The impact of ocean spray on the dynamics of the marine near-surface air boundary layer (MABL) in conditions of very high (hurricane) wind speeds is investigated. Toward this end, a model of the MABL in the presence of sea-spume droplets is developed. The model is based on the classical theory of the motion of suspended particles in a turbulent flow, where the mass concentration of droplets is not mandatory small. Description of the spume-droplet generation assumes that they, being torn off from breaking waves, are injected in the form of a jet of spray into the airflow at the altitude of breaking wave crests. The droplets affect the boundary-layer dynamics in two ways: via the direct impact of droplets on the airflow momentum forming the so-called spray force, and via the impact of droplets on the turbulent mixing through stratification. The latter is parametrized applying the Monin–Obukhov similarity theory. It is found that the dominant impact of droplets on the MABL dynamics appears through the action of the ‘spray force’ originated from the interaction of the ‘rain of spray’ with the wind velocity shear, while the efficiency of the stratification mechanism is weaker. The effect of spray leads to an increase in the wind velocity and suppression of the turbulent wind stress in the MABL. The key issue of the model is a proper description of the spume-droplet generation. It is shown that, after the spume-droplet generation is fitted to the observations, the MABL model is capable of reproducing the fundamental experimental finding—the suppression of the surface drag at very high wind speeds. We found that, at very high wind speeds, a thin part of the surface layer adjacent to the surface turns into regime of limited saturation with the spume droplets, resulting in the levelling off of the friction velocity and decrease of the drag coefficient as $${U_{10}^{-2}, U_{10}}$$ being the wind speed at 10-m height.

Journal ArticleDOI
TL;DR: In this article, the turbulent exchange of momentum between a two-dimensional cavity and the overlying boundary layer has been studied experimentally, using hot-wire anemometry and particle image velocimetry.
Abstract: The turbulent exchange of momentum between a two-dimensional cavity and the overlying boundary layer has been studied experimentally, using hot-wire anemometry and particle image velocimetry (PIV). Conditions within the boundary layer were varied by changing the width of the canyons upstream of the test canyon, whilst maintaining the square geometry of the test canyon. The results show that turbulent transfer is due to the coupling between the instabilities generated in the shear layer above the canyons and the turbulent structures in the oncoming boundary layer. As a result, there is no single, unique velocity scale that correctly characterizes all the processes involved in the turbulent exchange of momentum across the boundary layer. Similarly, there is no single velocity scale that can characterize the different properties of the turbulent flow within the canyon, which depends strongly on the way in which turbulence from the outer flow is entrained into the cavity and carried round by the mean flow. The results from this study will be useful in developing simple parametrizations for momentum exchange in the urban canopy, in situations where the street geometry consists principally of relatively long, uniform streets arranged in grid-like patterns; they are unlikely to be applicable to sparse geometries composed of isolated three-dimensional obstacles.

Journal ArticleDOI
TL;DR: In this article, a simple model to study the decay of turbulent kinetic energy (TKE) in the convective surface layer is presented, where the TKE is dependent upon two terms, the turbulent dissipation rate and the surface buoyancy fluctuations.
Abstract: A simple model to study the decay of turbulent kinetic energy (TKE) in the convective surface layer is presented. In this model, the TKE is dependent upon two terms, the turbulent dissipation rate and the surface buoyancy fluctuations. The time evolution of the surface sensible heat flux is modelled based on fitting functions of actual measurements from the LITFASS-2003 field campaign. These fitting functions carry an amplitude and a time scale. With this approach, the sensible heat flux can be estimated without having to solve the entire surface energy balance. The period of interest covers two characteristic transition sub-periods involved in the decay of convective boundary-layer turbulence. The first sub-period is the afternoon transition, when the sensible heat flux starts to decrease in response to the reduction in solar radiation. It is typically associated with a decay rate of TKE of approximately t −2 (t is time following the start of the decay) after several convective eddy turnover times. The early evening transition is the second sub-period, typically just before sunset when the surface sensible heat flux becomes negative. This sub-period is characterized by an abrupt decay in TKE associated with the rapid collapse of turbulence. Overall, the results presented show a significant improvement of the modelled TKE decay when compared to the often applied assumption of a sensible heat flux decreasing instantaneously or with a very short forcing time scale. In addition, for atmospheric modelling studies, it is suggested that the afternoon and early evening decay of sensible heat flux be modelled as a complementary error function.

Journal ArticleDOI
TL;DR: In this paper, a coupled wind and wave model in conformal coordinates is given, where the wave model is based on potential equations for the flow with a free surface, extended with the algorithm of breaking dissipation, and the shape of the β function connecting elevation and surface pressure is studied up to high nondimensional wave frequencies.
Abstract: The description of a coupled wind and wave model in conformal coordinates is given. The wave model is based on potential equations for the flow with a free surface, extended with the algorithm of breaking dissipation. The wave boundary-layer (WBL) model is based on the Reynolds equations with the K − e closure scheme with the solutions for air and water matched through the interface. The structure of the WBL and vertical profiles of the wave-produced momentum flux (WPMF) in a long-term simulation of the coupled dynamics are investigated and parameterized. The shape of the β function connecting elevation and surface pressure is studied up to high nondimensional wave frequencies. The errors of a linear presentation of the surface pressure are estimated. The β function and the universal shape of the WPMF profile obtained in coupled simulations allow a formulation of the one-dimensional theory of the WBL, and the carrying out of a detailed study of the WBL structure including the dependence of the drag coefficient on the wind speed. It is shown that a wide scatter of the experimental data on the drag coefficient can be explained, taking into account the age of waves. It is suggested that a reduction of the drag coefficient at high wind speeds can be qualitatively explained by the high-frequency wave suppression.

Journal ArticleDOI
TL;DR: Webb et al. as discussed by the authors provide a critique of the density correction theory and review the research it has spurred over the last 30 years, including recent efforts to address several important practical issues omitted by the original theory, including pressure correction, unintentional alternation of the sampled air, and error propagation.
Abstract: The density correction theory of Webb et al. (1980, Q J Roy Meteorol Soc 106: 85-100, hereafter WPL) is a principle underpinning the experimental investigation of sur- face fluxes of energy and masses in the atmospheric boundary layer. It has a long-lasting influence in boundary-layer meteorology and micrometeorology, and the year 2010 marks the 30th anniversary of the publication of the WPL theory. We provide here a critique of the theory and review the research it has spurred over the last 30 years. In the authors' opinion, the assumption of zero air source at the surface is a fundamental novelty that gives the WPL theory its enduring vitality. Considerations of mass conservation show that, in a non-steady state, the WPL mean vertical velocity and the thermal expansion velocity are two distinctly different quantities of the flow. Furthermore, the integrated flux will suffer a systematic bias if the expansion velocity is omitted or if the storage term is computed from time changes in the CO2 density. A discussion is provided on recent efforts to address several important practical issues omitted by the original theory, including pressure correction, unintentional alternation of the sampled air, and error propagation. These refinement efforts are motivated by the need for an unbiased assessment of the annual carbon budget in terrestrial ecosystems in the global eddy flux network (FluxNet).

Journal ArticleDOI
TL;DR: In this article, the authors examined the space-time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain.
Abstract: We examine the space–time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space–time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space–time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor’s hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.

Journal ArticleDOI
TL;DR: In this article, the scale-dependent Lagrangian dynamic model is used to account for the scale dependence of the eddyviscosity and eddydiffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification.
Abstract: Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the Smagorinsky model, (b) the Lagrangian dynamic model, and (c) the scale-dependent Lagrangian dynamic model (Stoll and Porte-Agel, Water Resour Res 2006, doi:10.1029/2005WR003989). Simulation results obtained with the different models are compared with data from wind-tunnel experiments conducted at the Environmental Flow Research Laboratory (EnFlo), University of Surrey, U.K. (Ross et al., Boundary-Layer Meteorol 113:427–459, 2004). It is found that, in this stably-stratified boundary-layer flow simulation, the scale-dependent Lagrangian dynamic model is able to account for the scale dependence of the eddy-viscosity and eddy-diffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification. As a result, simulations using this tuning-free model lead to turbulence statistics that are more realistic than those obtained with the other two models.

Journal ArticleDOI
TL;DR: In this article, a two-component hot-film anemometer was employed to obtain vertical profiles of velocity statistics in a zero pressure gradient turbulent boundary layer for flow over naturally deposited snow surfaces.
Abstract: This study presents the results from a series of wind-tunnel experiments designed to investigate the aerodynamic roughness length z0 of fresh snow under no-drift conditions. A two-component hot-film anemometer was employed to obtain vertical profiles of velocity statistics in a zero pressure gradient turbulent boundary layer for flow over naturally deposited snow surfaces. The roughness of these snow surfaces was measured by means of digital photography to capture characteristic length scales that can be related to z0. Our results show that, under aerodynamically rough conditions, the mean value of the roughness length for fresh snow is \({\langle{z}_{0}\rangle= 0.24}\) mm with a standard deviation σ(z0) = 0.05 mm. In this study, we show that variations in z0 are associated with variations in the roughness geometry. The roughness measurements suggest that the estimated values of z0 are consistent with the presence of irregular roughness structures that develop during snowfalls that mimic ballistic deposition processes.

Journal ArticleDOI
TL;DR: In this article, the authors explored the ability of a simple urban surface parametrization embedded in a mesoscale meteorological model to correctly reproduce observed values of the urban heat island (UHI) intensity, which is defined as the urban-rural surface air temperature difference.
Abstract: We explore the ability of a simple urban surface parametrization, embedded in a mesoscale meteorological model, to correctly reproduce observed values of the urban heat island (UHI) intensity, which is defined as the urban-rural surface air temperature difference. To do so, a simple urban scheme was incorporated into the Advanced Regional Prediction System (ARPS). Subsequently, a simulation was performed with the coupled model over the wider area of Paris, for a 12-day period in June 2006 that was characterised by conditions prone to UHI development. Simulated 2-m air temperature was compared with observed values for urban and rural stations, yielding mean errors of 1.4 and 1.5 K, respectively. More importantly, it was found that the model also displayed an overall good capability of reproducing the observed temperature differences. In particular, the magnitude (up to 6 K) and timing of the diurnal cycle of the UHI intensity was simulated well, the model exhibiting a mean error of 1.15 K. As a result, our conclusion is that the ARPS model, extended with simple urban surface physics, is able to capture observed urban-rural air temperature differences well, at least for the domain and period studied.