scispace - formally typeset
Search or ask a question

Showing papers in "Cellular Oncology in 2017"


Journal ArticleDOI
TL;DR: The findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.
Abstract: Human mesenchymal stem cells (MSCs) have been shown to be involved in the formation and modulation of tumor stroma and in interacting with tumor cells, partly through their secretome. Exosomes are nano-sized intraluminal multi-vesicular bodies secreted by most types of cells and have been found to mediate intercellular communication through the transfer of genetic information via coding and non-coding RNAs to recipient cells. Since exosomes are considered as protective and enriched sources of shuttle microRNAs (miRNAs), we hypothesized that exosomal transfer of miRNAs from MSCs may affect tumor cell behavior, particularly angiogenesis. Exosomes derived from MSCs were isolated and characterized by scanning electron microscopy analyses, dynamic light scattering measurements, and Western blotting. Fold changes in miR-100 expression levels were calculated in exosomes and their corresponding donor cells by qRT-PCR. The effects of exosomal transfer of miR-100 from MSCs were assessed by qRT-PCR and Western blotting of the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. The quantification of secreted VEGF protein was determined by enzyme-linked immunosorbent assay. The putative paracrine effects of MSC-derived exosomes on tumor angiogenesis were explored by in vitro angiogenesis assays including endothelial cell proliferation, migration and tube formation assays. We found that MSC-derived exosomes induce a significant and dose-dependent decrease in the expression and secretion of vascular endothelial growth factor (VEGF) through modulating the mTOR/HIF-1α signaling axis in breast cancer-derived cells. We also found that miR-100 is enriched in MSC-derived exosomes and that its transfer to breast cancer-derived cells is associated with the down-regulation of VEGF in a time-dependent manner. The putative role of exosomal miR-100 transfer in regulating VEGF expression was substantiated by the ability of anti-miR-100 to rescue the inhibitory effects of MSC-derived exosomes on the expression of VEGF in breast cancer-derived cells. In addition, we found that down-regulation of VEGF mediated by MSC-derived exosomes can affect the vascular behavior of endothelial cells in vitro. Overall, our findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.

227 citations


Journal ArticleDOI
TL;DR: It is proposed that the balance between oncogenic versus tumor suppressive miRNAs acting within transcription factor-miRNA regulatory networks, influences both the multistage process of neoplastic transformation, whereby normal cells become cancerous, and their stress responses.
Abstract: Cancer is one of the leading causes of mortality. The neoplastic transformation of normal cells to cancer cells is caused by a progressive accumulation of genetic and epigenetic alterations in oncogenes, tumor suppressor genes and epigenetic regulators, providing cells with new properties, collectively known as the hallmarks of cancer. During the process of neoplastic transformation cells progressively acquire novel characteristics such as unlimited growth potential, increased motility and the ability to migrate and invade adjacent tissues, the ability to spread from the tumor of origin to distant sites, and increased resistance to various types of stresses, mostly attributed to the activation of genetic stress-response programs. Accumulating evidence indicates a crucial role of microRNAs (miRNAs or miRs) in the initiation and progression of cancer, acting either as oncogenes (oncomirs) or as tumor suppressors via several molecular mechanisms. MiRNAs comprise a class of small ~22 bp long noncoding RNAs that play a key role in the regulation of gene expression at the post-transcriptional level, acting as negative regulators of mRNA translation and/or stability. MiRNAs are involved in the regulation of a variety of biological processes including cell cycle progression, DNA damage responses and apoptosis, epithelial-to-mesenchymal cell transitions, cell motility and stemness through complex and interactive transcription factor-miRNA regulatory networks. The impact and the dynamic potential of miRNAs with oncogenic or tumor suppressor properties in each stage of the multistep process of tumorigenesis, and in the adaptation of cancer cells to stress, are discussed. We propose that the balance between oncogenic versus tumor suppressive miRNAs acting within transcription factor-miRNA regulatory networks, influences both the multistage process of neoplastic transformation, whereby normal cells become cancerous, and their stress responses. The role of specific tumor-derived exosomes containing miRNAs and their use as biomarkers in diagnosis and prognosis, and as therapeutic targets, are also discussed.

124 citations


Journal ArticleDOI
TL;DR: The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.
Abstract: Lung cancer is the most common cause of cancer-related mortality in humans. There are several reasons for this high rate of mortality, including metastasis to several organs, especially the brain. In fact, lung cancer is responsible for approximately 50% of all brain metastases, which are very difficult to manage. Understanding the cellular and molecular mechanisms underlying lung cancer-associated brain metastasis brings up novel therapeutic promises with the hope to ameliorate the severity of the disease. Here, we provide an overview of the molecular mechanisms underlying the pathogenesis of lung cancer dissemination and metastasis to the brain, as well as promising horizons for impeding lung cancer brain metastasis, including the role of cancer stem cells, the blood-brain barrier, interactions of lung cancer cells with the brain microenvironment and lung cancer-driven systemic processes, as well as the role of growth factor/receptor tyrosine kinases, cell adhesion molecules and non-coding RNAs. In addition, we provide an overview of current and novel therapeutic approaches, including radiotherapy, surgery and stereotactic radiosurgery, chemotherapy, as also targeted cancer stem cell and epithelial-mesenchymal transition (EMT)-based therapies, micro-RNA-based therapies and other small molecule or antibody-based therapies. We will also discuss the daunting potential of some combined therapies. The identification of molecular mechanisms underlying lung cancer metastasis has opened up new avenues towards their eradication and provides interesting opportunities for future research aimed at the development of novel targeted therapies.

98 citations


Journal ArticleDOI
TL;DR: Targeting VCAM-1, expressed on the surface of breast cancer cells, and/or its specific ligand VLA-4/α4β1 integrin, expresses on cells at the site of metastasis, may be a useful strategy to reduce breast cancer cell invasion and metastasis.
Abstract: Breast cancer is a notable cause of cancer-related death in women worldwide. Metastasis to distant organs is responsible for ~90% of this death. Breast cells convert to malignant cancer cells after acquiring the capacity of invasion/intravasation into surrounding tissues and, finally, extravasation/metastasis to distant organs (i.e., lymph nodes, lungs, bone, brain). Metastasis to distant organs depends on interactions between disseminated tumor cells (DTCs) and the endothelium of blood vessels present in the tumor microenvironment. Among several known endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) has been found to be involved in this process. It has been shown that VCAM-1 is aberrantly expressed in breast cancer cells and that it can bind to its natural ligand α4β1integrin, also denoted as very late antigen 4 (VLA-4). This binding appears to be responsible for the metastasis of breast cancer cells to lung, bone and brain. The α4β1 integrin - VCAM-1 interaction thus represents a potential therapeutic target for metastatic breast cancer cells. The development of inhibitors of this interaction may be instrumental for the clinical management of breast cancer patients. This study focuses on recent progress on the role of VCAM-1, an important glycoprotein belonging to the immunoglobulin (Ig) superfamily of cell surface adhesion molecules in breast cancer angiogenesis, survival and metastasis. Targeting VCAM-1, expressed on the surface of breast cancer cells, and/or its specific ligand VLA-4/α4β1 integrin, expressed on cells at the site of metastasis, may be a useful strategy to reduce breast cancer cell invasion and metastasis. Various approaches to therapeutically target VCAM-1 and VLA-4 are also discussed.

93 citations


Journal ArticleDOI
TL;DR: The data indicate that EV miR155 may serve as an attractive new, non-invasive diagnostic biomarker in human hematologic malignancies and is correlated with high white blood cell counts in AML patients.
Abstract: The use of extracellular vesicles (EVs) from body fluids as “liquid biopsies” is emerging as a promising approach for the diagnosis, prognosis and therapeutic monitoring of cancer patients. MicroRNA-155 (miR155), a non-coding transcript of the B-cell integration cluster (BIC) gene, has been reported to play a critical role in the pathogenesis of several types of hematologic malignancies (HMs) in which high miR155 levels have been found. At yet, however, the EV miR155 level and its putative clinical relevance in sera of HM patients have not been reported. EVs from sera of representative patients with eight different HMs and healthy subjects (controls) were isolated using differential centrifugation. The identity and quality of the EVs were verified by atomic force and transmission electron microscopy. The EV miR155 levels were measured by quantitative RT-PCR. The sensitivity, specificity and area under the curve (AUC) of differences in EV miR155 levels were determined using ROC curve analyses. We found that the EV miR155 levels were significantly higher in chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML) and Waldenstrom’s macroglobulinemia (WM) cases compared to controls. Conversely, we found that the EV miR155 levels were significantly lower in myelodysplastic syndrome (MDS) and multiple myeloma (MM) cases. No differences were found in follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) or Hodgkin’s Lymphoma (HL) cases compared to controls. EV miR155 ROC curve analyses revealed significantly different patterns in CLL and AML cases compared to controls, and in AML cases compared to MDS cases (p = 0.004, p = 0.01 and p = 0.04, respectively). In addition, we found that high EV miR155 levels correlated with high white blood cell counts in AML patients. Our data indicate that EV miR155 may serve as an attractive new, non-invasive diagnostic biomarker in human hematologic malignancies.

69 citations


Journal ArticleDOI
TL;DR: Several miRNAs critical for PDAC development are identified using weighted gene co-expression network analysis (WGCNA) and it is found that these novel data may explain at least some of the previous PDAC gene expression analysis results.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal prognosis which is, among others, due to a lack of suitable biomarkers and therapeutic targets. Previously, basic gene expression analysis methods have been used for their identification, but recently new algorithms have been developed allowing more comprehensive data analyses. Among them, weighted gene co-expression network analysis (WGCNA) has already been applied to several cancer types with promising results. We applied WGCNA to miRNA expression data from PDAC patients. Specifically, we processed microarray-based expression data of 2555 miRNAs in serum from 100 PDAC patients and 150 healthy subjects. We identified network modules of co-expressed miRNAs in the healthy subject dataset and verified their preservation in the PDAC dataset. In the non-preserved modules, we selected key miRNAs and carried out functional enrichment analyses of their experimentally known target genes. Finally, we tested their prognostic significance using overall survival analyses. Through WGCNA we identified several miRNAs that discriminate healthy subjects from PDAC patients and that, therefore, may play critical roles in PDAC development. At a functional level, we found that they regulate p53, FoxO and ErbB associated cellular signalling pathways, as well as cell cycle progression and various genes known to be involved in PDAC development. Some miRNAs were also found to serve as novel prognostic biomarkers, whereas others have previously already been proposed as such, thereby validating the WGCNA approach. In addition, we found that these novel data may explain at least some of our previous PDAC gene expression analysis results. We identified several miRNAs critical for PDAC development using WGCNA. These miRNAs may serve as biomarkers for PDAC diagnosis/prognosis and patient stratification, and as putative novel therapeutic targets.

68 citations


Journal ArticleDOI
TL;DR: VPA appears have a stronger and broader cytotoxic effect than TSA and, thus, may represent a better choice for anti-pancreatic cancer therapy.
Abstract: Histone deacetylase inhibitors (HDACi) are anti-neoplastic agents that are known to affect the growth of different cancer types, but their underlying mechanisms are still incompletely understood. Here, we compared the effects of two HDACi, i.e., Trichostatin A (TSA) and Valproic Acid (VPA), on the induction of cell death and autophagy in pancreatic cancer-derived cells that exhibit a high metastatic capacity and carry KRAS/p53 double mutations. Cell viability and proliferation tests were carried out using Trypan blue dye exclusion, MTT and BrdU assays. FACS analyses were carried out to assess cell cycle progression, apoptosis, reactive oxygen species (ROS) production and mitochondrial depolarization, while Western blot and immunoprecipitation analyses were employed to detect proteins involved in apoptosis and autophagy. We found that both VPA and TSA can induce apoptosis in Panc1 and PaCa44 pancreatic cancer-derived cells by triggering mitochondrial membrane depolarization, Cytochrome c release and Caspase 3 activation, although VPA was more effective than TSA, especially in Panc1 cells. As underlying molecular events, we found that ERK1/2 was de-phosphorylated and that the c-Myc and mutant p53 protein levels were reduced after VPA and, to a lesser extent, after TSA treatment. Up-regulation of p21 and Puma was also observed, concomitantly with mutant p53 degradation. In addition, we found that in both cell lines VPA increased the pro-apoptotic Bim level, reduced the anti-apoptotic Mcl-1 level and increased ROS production and autophagy, while TSA was able to induce these effects only in PaCA44 cells. From our results we conclude that both VPA and TSA can induce pancreatic cancer cell apoptosis and autophagy. VPA appears have a stronger and broader cytotoxic effect than TSA and, thus, may represent a better choice for anti-pancreatic cancer therapy.

64 citations


Journal ArticleDOI
TL;DR: The ampTSmiR test is more sensitive than the conventional TGCC protein biomarkers for the detection of residual disease and relapse, excluding mature teratoma.
Abstract: α-fetoprotein (AFP) and human chorionic gonadotropin subunit beta (B-HCG) are informative serum biomarkers for the primary diagnosis and follow-up of testicular germ cell cancer (TGCC) patients. About 20% of TGCC patients with a non-seminoma (NS) and about 80% with a seminoma (SE) are, however, negative for these biomarkers. Embryonic stem cell microRNAs (miRs) may serve as promising alternative serum biomarkers. Here we investigated a retrospective series of serum samples from selected TGCC patients who developed a relapse in time to test the possible additional value of the serum-based ampTSmiR test compared to the conventional serum-based protein biomarkers for follow-up. We investigated 261 retrospective serum samples of six selected fully evaluated TGCC patients with a proven relapse using the ampTSmiR test for miR-371a-3p, miR-373-3p, and miR-367-3p and compared the results to those of the conventional protein biomarkers. At primary diagnosis, elevated serum B-HCG, AFP and LDH levels were found to be informative in 4/6, 3/6 and 3/6 patients, respectively. At primary diagnosis the levels of miR-371a-3p and miR-373-3p were elevated in 4/4, and miR-367-3p in 3/4 patients. For two cases no starting serum sample was available for retrospective miR analysis. Residual disease (overlooked by histopathological examination) was detected in one case by miR-371a-3p only. The miR-371a-3p level was increased in one patient two months before detection of an intracranial metastasis. B-HCG was informative in 3/4 and the ampTSmiR test in 4/4 patients with a relapse or residual disease. None of the biomarkers were informative for the detection of residual mature teratoma. The ampTSmiR test is more sensitive than the conventional TGCC protein biomarkers for the detection of residual disease and relapse, excluding mature teratoma.

60 citations


Journal ArticleDOI
TL;DR: It is found that HPIP is highly expressed in high-grade primary ovarian tumors and may promote their migration, invasion and EMT, a process that is associated with metastasis and may serve as a potential therapeutic target for cisplatin resistant ovarian tumors.
Abstract: Hematopoietic PBX interacting protein (HPIP), a scaffold protein, is known to regulate the proliferation, migration and invasion in different cancer cell types. The aim of this study was to assess the role of HPIP in ovarian cancer cell migration, invasion and epithelial-mesenchymal transition (EMT), and to unravel the mechanism by which it regulates these processes. HPIP expression was assessed by immunohistochemistry of tissue microarrays containing primary ovarian tumor samples of different grades. OAW42, an ovarian carcinoma-derived cell line exhibiting a high HPIP expression, was used to study the role of HPIP in cell migration, invasion and EMT. HPIP knockdown in these cells was achieved using a small hairpin RNA (shRNA) approach. Cell migration and invasion were assessed using scratch wound and transwell invasion assays, respectively. The extent of EMT was assessed by determining the expression levels of Snail, Vimentin and E-cadherin using Western blotting. The effect of HPIP expression on AKT and MAPK activation was also investigated by Western blotting. Cell viabilities in response to cisplatin treatment were assessed using a MTT assay, whereas apoptosis was assessed by determining caspase-3 and PARP cleavage in ovarian carcinoma-derived SKOV3 cells. We found that HPIP is highly expressed in high-grade primary ovarian tumors. In addition, we found that HPIP promotes the migration, invasion and EMT in OAW42 cells and induces EMT in these cells via activation of the PI3K/AKT pathway. The latter was found to lead to stabilization of the Snail protein and to repression of E-cadherin expression through inactivation of GSK-3β. We also found that HPIP expression confers cisplatin resistance to SKOV3 cells after prolonged exposure and that its subsequent knockdown decreases the viability of these cells and increases caspase-3 activation and PARP proteolysis in these cells following cisplatin treatment. From these results we conclude that HPIP expression is associated with high-grade ovarian tumors and may promote their migration, invasion and EMT, a process that is associated with metastasis. In addition, we conclude that HPIP may serve as a potential therapeutic target for cisplatin resistant ovarian tumors.

51 citations


Journal ArticleDOI
TL;DR: The data indicate that leptin may enhance the proliferation, migration and invasion of breast cancer cells via ACAT2 up-regulation through the PI3K/AKT/SREBP2 signaling pathway and the leptin/ACAT2 axis may represent an attractive therapeutic target for breast cancer, particularly in postmenopausal and/or obese women.
Abstract: Previously, it has been shown that obesity may be considered as a risk factor for breast cancer in postmenopausal women. Leptin, a hormone whose level is elevated in obesity, has been suggested to be involved in the development of breast cancer, and univariate survival analyses have shown that over-expression of ACAT2, an enzyme that is involved in the production of cholesteryl esters, may be associated with a poor prognosis. Here, we aimed to investigate the effect of leptin on the proliferation, migration and invasion of breast cancer cells, as well as to elucidate its underlying mode of action. Gene expression changes in leptin treated breast cancer-derived MCF-7, T47D and BT474 cells were assessed using PCR array, qRT-PCR and Western blot analyses. The expression patterns of Ob-R (leptin receptor) and ACAT2 in breast cancer cells and primary breast cancer tissue samples were analyzed using immunofluorescence and immunohistochemistry, respectively. Leptin-induced proliferation of breast cancer cells was assessed using a CCK8 assay, and scratch wound and Transwell assays were used to assess breast cancer cell invasion and migration. We found that, among the genes tested, ACAT2 expression exhibited the most significant changes in the leptin treated cells. In addition, we found that inhibition of ACAT2 expression using pyripyropene A (PPPA) or siRNA-mediated gene silencing significantly decreased leptin-induced proliferation, migration and invasion of MCF-7 and T47D cells. Subsequent Western blot analyses strongly indicated that the PI3K/AKT/SREBP2 signaling pathway was involved in leptin-induced ACAT2 upregulation in both MCF-7 and T47D cells. Finally, through the analysis of primary breast cancer tissue samples we found that ACAT2 may affect cancer progression through activation of the Ob-R. Our data indicate that leptin may enhance the proliferation, migration and invasion of breast cancer cells via ACAT2 up-regulation through the PI3K/AKT/SREBP2 signaling pathway. Therefore, the leptin/ACAT2 axis may represent an attractive therapeutic target for breast cancer, particularly in postmenopausal and/or obese women.

50 citations


Journal ArticleDOI
TL;DR: The data indicate that the co-culture of CSCs and macrophages results in bi-directional signaling that alters the phenotypes of both cell types, and suggest potential therapeutic strategies to disrupt the CSC phenotype by impairing its communication with macrophage.
Abstract: Given its extremely poor prognosis, there is a pressing need for an improved understanding of the biology of glioblastoma multiforme (GBM), including the roles of tumor subpopulations that may contribute to their growth rate and therapy resistance. The most malignant phenotypes of GBM have been ascribed to the presence of subpopulations of cancer stem cells (CSCs), which are resistant to chemotherapeutic drugs and ionizing radiation and which promote invasiveness and metastasis. The mechanisms by which the CSC state is obtained and by which it promotes tumor maintenance are only beginning to emerge. We hypothesize that M2 polarized macrophages may affect CSC phenotypes via cell-cell communication. We investigated the interplay between glioma CSCs and macrophages via co-culture. The invasiveness of CSCs in the absence and presence of macrophages was assessed using collagen degradation and Transwell migration assays. The role of STAT3 as a CSC phenotypic mediator was assessed using siRNA-mediated gene silencing. We found that the levels of a M2 macrophage-specific secreted cytokine, TGF-β1, were elevated in the presence of CSCs, regardless of whether the cells were plated as contacting or non-contacting co-cultures. In addition, we found that the co-culture resulted in enhanced expression of M2 markers in macrophages that were previously polarized to the M1 phenotype. siRNA-mediated STAT3 silencing was found to reduce the chemo-responsiveness and migratory abilities of the CSCs. Combination treatment of STAT3 siRNA and DNA alkylating agents was found to further abrogate CSC functions. Our data indicate that the co-culture of CSCs and macrophages results in bi-directional signaling that alters the phenotypes of both cell types. These results provide an explanation for recently observed effects of macrophages on GBM tumor cell growth, motility and therapeutic resistance, and suggest potential therapeutic strategies to disrupt the CSC phenotype by impairing its communication with macrophages.

Journal ArticleDOI
TL;DR: It is found that the observed cancer-related pre- and post-operative changes in their plasma levels may not only reflect the presence of a primary cancer, but also of a systemic response to cancer.
Abstract: The majority of non-small cell lung cancer (NSCLC) patients presents with an advanced-stage disease and, consequently, exhibits a poor overall survival rate. We aimed to assess changes in plasma miR-9, miR-16, miR-205 and miR-486 levels and their potential as biomarkers for the diagnosis and monitoring of NSCLC patients. Plasma was collected from 50 healthy donors and from NSCLC patients before surgery (n = 61), 1 month after surgery (n = 37) and 1 year after surgery (n = 14). microRNA levels were quantified using qRT-PCR. We found in NSCLC patients before treatment, both with squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), significantly higher plasma miR-16 and miR-486 levels than in healthy individuals. Pre-treatment miR-205 concentrations were found to be significantly higher in SQCC than in ADC patients, and only SQCC patients presented significantly higher circulating miR-205 levels than healthy donors. SQCC plasma miR-9 levels were not different from normal control levels, but in ADC they were found to be significantly decreased. A combination of plasma miR-16, miR-205 and miR-486 measurements was found to discriminate NSCLC patients from healthy persons, with a specificity of 95% and a sensitivity of 80%. Following tumor resection, we found that the miR-9 and miR-205 levels significantly decreased, even below the normal level, whereas the increased miR-486 level persisted up to one year after surgery, and the miR-16 level decreased to normal. After tumor resection, none of the miR levels tested was found to relate to recurrence. Our data indicate that miR-9, miR-16, miR-205 and miR-486 may serve as NSCLC biomarkers. The observed cancer-related pre- and post-operative changes in their plasma levels may not only reflect the presence of a primary cancer, but also of a systemic response to cancer.

Journal ArticleDOI
TL;DR: Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Abstract: In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.

Journal ArticleDOI
TL;DR: It is found that pre-treatment of GBM cells with TSA resulted in an enhancement of their sensitivity to CCNU, possibly via the accumulation of DSBs, decreased cell proliferation and viability rates, and an increased apoptotic rate.
Abstract: Glioblastoma (GBM) ranks among the deadliest solid cancers worldwide and its prognosis has remained dismal, despite the use of aggressive chemo-irradiation treatment regimens. Limited drug delivery into the brain parenchyma and frequent resistance to currently available therapies are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone deacetylase (HDAC) expression levels were determined using quantitative real-time PCR and Western blotting. The efficacy of either CCNU alone or its combination with TSA was assessed using various assays, i.e., cell viability assays (MTT), cell cycle assays (flow cytometry, FACS), double-strand DNA break (DSB) quantification assays (microscopy/immunofluorescence) and expression profiling assays of proteins involved in apoptosis and cell stress (Western blotting and protein array). We found that the HDAC1, 3 and 6 expression levels were significantly increased in GBM samples compared to non-neoplastic brain control samples. Additionally, we found that pre-treatment of GBM cells with TSA resulted in an enhancement of their sensitivity to CCNU, possibly via the accumulation of DSBs, decreased cell proliferation and viability rates, and an increased apoptotic rate. From our data we conclude that the combined administration of TSA and CCNU eradicates GBM cells with a higher efficacy than either drug alone, thereby opening a novel avenue for the treatment of GBM.

Journal ArticleDOI
TL;DR: It is found that microRNA-145 binds to the wild-type 3’UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP2 expression, and this provides a novel mechanistic basis for its tumour suppressive mode of action in human cervical cancer cells.
Abstract: Previously, it has been reported that microRNA-145 (miR-145) is lowly expressed in human cervical cancers and that its putative tumour suppressive role may be attributed to epithelial-mesenchymal transition (EMT) regulation. Here, we aimed to assess whether miR-145 may affect EMT-associated markers/genes and suppress cervical cancer growth and motility, and to provide a mechanistic basis for these phenomena. The identification of the SMAD-interacting protein 1 (SIP1) mRNA as putative miR-145 target was investigated using a 3’ untranslated region (3’UTR) luciferase assay and Western blotting, respectively. The functional effects of exogenous miR-145 expression, miR-145 suppression or siRNA-mediated SIP1 expression down-regulation in cervical cancer-derived C33A and SiHa cells were analysed using Western blotting, BrdU incorporation (proliferation), transwell migration and invasion assays. In addition, the expression levels of miR-145 and SIP1 were determined in primary human cervical cancer and non-cancer tissue samples using qRT-PCR. We found that miR-145 binds to the wild-type 3’UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP1 expression. In addition, we found that exogenous miR-145 expression or siRNA-mediated down-regulation of SIP1 expression attenuates the proliferation, migration and invasion of C33A and SiHa cells and alters the expression of the EMT-associated markers CDH1, VIM and SNAI1, whereas inhibition of endogenous miR-145 expression elicited the opposite effects. The expression of miR-145 in cervical cancer tissue samples was found to be low, while that of SIP1 was found to be high compared to non-cancerous cervical tissues. An inverse expression correlation between the two was substantiated through the anlaysis of data deposited in the TCGA database. Our data indicate that low miR-145 expression levels in conjunction with elevated SIP1 expression levels may contribute to cervical cancer development. MiR-145-mediated regulation of SIP1 provides a novel mechanistic basis for its tumour suppressive mode of action in human cervical cancer cells.

Journal ArticleDOI
Guangcheng Guo1, Jia-Xiang Wang1, Mingli Han1, Lian-Ping Zhang1, Lin Li1 
TL;DR: It is suggested that miR-761 may serve as a promising therapeutic target for TNBC after it was found that it was up-regulated in primary breast cancer tissues and its derived cell lines and, particularly, in TNBC tissues and cell lines.
Abstract: Despite advances that have been made in systemic chemotherapy, the prognosis of advanced triple-negative breast cancer (TNBC) patients is still poor. The identification of key factors governing TNBC development is considered imperative for the development of novel effective therapeutic approaches. Previously, it has been reported that microRNA (miR)-761 may act as either a tumor suppressor or as an oncogene in different types of cancer. Here, we aimed at assessing the biological role of this miRNA in TNBC. First, we measured the expression of miR-761 in primary breast cancer tissues and breast cancer-derived cell lines using qRT-PCR. Subsequently, over-expression and silencing experiments were performed to determine the role of miR-761 in TNBC cell proliferation, colony formation, migration and invasion in vitro. The in vivo role of miR-761 in TNBC growth and metastasis was determined in mouse models. Bioinformatics analyses, dual-luciferase reporter assays, Western blot analyses and rescue experiments were performed to identify miR-761 target gene(s). We found that miR-761 was up-regulated in primary breast cancer tissues and its derived cell lines and, particularly, in TNBC tissues and cell lines. We also found that exogenous miR-761 over-expression augmented in vitro TNBC cell proliferation, colony formation, migration and invasion, whereas miR-761 down-regulation impaired these features. In vivo, we found that miR-761 over-expression facilitated TNBC growth and lung metastasis. Mechanistically, miR-761 was found to negatively regulate the expression of tripartite motif-containing 29 (TRIM29) in TNBC cells by binding to the 3′-untranslated region of its mRNA. In conformity with these results, a significant negative correlation between miR-761 expression and TRIM29 protein expression was noted in primary TNBC tissues (r = −0.452, p = 0.0126). We also found that exogenous TRIM29 over-expression reversed the proliferative and invasive capacities of TNBC cells. Our data indicate that miR-761 acts as an oncogene in TNBC. This mode of action can, at least partially, be ascribed to the down-regulation of its target TRIM29. We suggest that miR-761 may serve as a promising therapeutic target for TNBC.

Journal ArticleDOI
TL;DR: It is found that DNAs extracted from formalin fixed paraffin embedded (FFPE) tissue samples yielded lower amplification signals compared to those obtained from liquid based cytology (LBC) samples, but they were clearly distinguishable from negative background signals.
Abstract: Human papilloma virus (HPV) infection is associated with several anogenital malignancies. Here, we set out to evaluate digital droplet PCR (ddPCR) as a tool for HPV 16, 18, 33 and 45 viral load quantification and, in addition, to compare the efficacy of the ddPCR assay for HPV 16 detection with that of quantitative real-time PCR (qPCR). Clinical samples, positive for HPV genotypes 16, 18, 33 and 45 were analyzed for viral load using ddPCR. Sample DNA was cleaved before droplet generation and PCR. Droplets positive for VIC and FAM fluorescence were read in a QX200 Droplet reader™ (BIO-RAD) after which the viral load was calculated using Quantasoft software. We found that DNAs extracted from formalin fixed paraffin embedded (FFPE) tissue samples yielded lower amplification signals compared to those obtained from liquid based cytology (LBC) samples, but they were clearly distinguishable from negative background signals. The viral limit of detection was 1.6 copies of HPV 16, 2.8 copies of HPV 18, 4.6 copies of HPV 33 and 1.6 copies of HPV 45. The mean inter-assay coefficients of variability (CV) for the assays ranged from 3.4 to 7.0%, and the mean intra-assay CV from 2.6 to 8.2%. The viral load in the different cohorts of tumor samples ranged from 154 to 340,200 copies for HPV 16, 244 to 31,300 copies for HPV 18 and 738 to 69,100 copies for HPV 33. One sample positive for HPV 45 contained 1331 viral copies. When comparing qPCR data with ddPCR copy number data, the qPCR values were found to be 1 to 31 times higher. Separation of fragments in nanodroplets may facilitate the amplification of fragmented human and viral DNA. The method of digital droplet PCR may, thus, provide a new and promising tool for evaluating the HPV viral load in clinical samples.

Journal ArticleDOI
TL;DR: It is found that GBM-derived cells treated with a combination of SHK and TMZ showed decreases in their proliferation and migration capacities, which may constitute a powerful new tool for GBM treatment by reducing therapy resistance and tumor recurrence.
Abstract: Glioblastomas (GBM) comprise 17% of all primary brain tumors. These tumors are extremely aggressive due to their infiltrative capacity and chemoresistance, with glial-to-mesenchymal transition (GMT) proteins playing a prominent role in tumor invasion. One compound that has recently been used to reduce the expression of these proteins is shikonin (SHK), a naphthoquinone with anti-tumor properties. Temozolomide (TMZ), the most commonly used chemotherapeutic agent in GBM treatment, has so far not been studied in combination with SHK. Here, we investigated the combined effects of these two drugs on the proliferation and motility of GBM-derived cells. The cytotoxic and proliferative effects of SHK and TMZ on human GBM-derived cells were tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Ki67 staining and BrdU incorporation assays. The migration capacities of these cells were evaluated using a scratch wound assay. The expression levels of β3 integrin, metalloproteinases (MMPs) and GMT-associated proteins were determined by Western blotting and immunocytochemistry. We found that GBM-derived cells treated with a combination of SHK and TMZ showed decreases in their proliferation and migration capacities. These decreases were followed by the suppression of GMT through a reduction of β3 integrin, MMP-2, MMP-9, Slug and vimentin expression via inactivation of PI3K/AKT signaling. From our results we conclude that dual treatment with SHK and TMZ may constitute a powerful new tool for GBM treatment by reducing therapy resistance and tumor recurrence.

Journal ArticleDOI
TL;DR: Inhibition of CDK4 by palbociclib can enhance paclitaxel sensitivity in both Rb-positive and Rb -negative MDR ovarian cancer cells by increasing apoptosis and may serve as a promising target in the treatment of ovarian cancer.
Abstract: Overexpression of cyclin-dependent kinase (CDK) 4 has been observed in a variety of cancers and has been found to contribute to tumor cell growth and proliferation. However, the effect of inhibition of CDK4 in ovarian cancer is unknown. We investigated the therapeutic effect of the CDK4 inhibitor palbociclib in combination with paclitaxel in ovarian cancer cells. Cell viabilities were determined by MTT assay after exposure to different dosages of palbociclib and/or paclitaxel. Western blot, immunofluorescence, and Calcein AM assays were conducted to determine the mechanisms underlying the cytotoxic effects of palbociclib in combination with paclitaxel. CDK4 siRNA was used to validate the outcome of targeting CDK4 by palbociclib in ovarian cancer cells. We found that combinations of palbociclib and paclitaxel significantly enhanced drug sensitivity in both Rb-positive (SKOV3TR) and Rb-negative (OVCAR8TR) ovarian cancer-derived cells. When combined with paclitaxel, palbociclib induced apoptosis in both SKOV3TR and OVCAR8TR cells. We also found that palbociclib inhibited the activity of P-glycoprotein (Pgp), and that siRNA-mediated CDK4 knockdown sensitized multidrug resistant (MDR) SKOV3TR and OVCAR8TR cells to paclitaxel. Inhibition of CDK4 by palbociclib can enhance paclitaxel sensitivity in both Rb-positive and Rb-negative MDR ovarian cancer cells by increasing apoptosis. CDK4 may serve as a promising target in the treatment of ovarian cancer.

Journal ArticleDOI
TL;DR: It is found that CUG2-induced EGFR upregulation confers doxorubicin resistance to lung (cancer) cells through Stat1-HDAC4 signaling and HDAC4 silencing sensitized the cells to dox orubic in resistance by decreasing Stat1 phosphorylation and EGFR expression, thus indicating an interplay between HDAC 4, Stat1 and EG FR.
Abstract: Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by decreasing Stat1 phosphorylation and EGFR expression, thus indicating an interplay between HDAC4, Stat1 and EGFR. Taken together, we conclude that CUG2-induced EGFR upregulation confers doxorubicin resistance to lung (cancer) cells through Stat1-HDAC4 signaling.

Journal ArticleDOI
TL;DR: The data indicate that Lupeol may orchestrate a bifurcated regulation of neoplastic growth and apoptosis in head and neck cancers and may serve as a promising agent for the management of tumors that have progressed on a platinum-based treatment regimen.
Abstract: The tumor suppressor protein p53 is known to control cell cycle arrest and apoptosis. Lupeol is a phytochemical that has been found to induce apoptosis in different cancer types through the extrinsic pathway. As yet, however, its role in the induction of cell cycle arrest and apoptosis through the intrinsic pathway in head and neck cancer has not been investigated. Here, we aimed at understanding the mechanism underlying the antitumor effect of Lupeol in head and neck cancer. The antitumor effect of Lupeol on oral and laryngeal carcinomas was assessed using two in vitro 2D cell line models (HEp-2, UPCI:SCC-131) and, subsequently, an ex vivo 3D tumor explant culture platform that maintains key features of the native tumor microenvironment. The mechanism underlying Lupeol-mediated antitumor responses was delineated using MTT, colony formation, flow cytometry, immunofluorescence, Western blotting and immunohistochemistry assays. We found that Lupeol induced an enhanced expression of p53 in both cell line models tested and, subsequently, cell cycle arrest at the G1 phase. In addition we found that, following Lupeol treatment, p53 induced Bax expression and activated the intrinsic apoptotic pathway (as measured by Caspase-3 cleavage). Interestingly, Lupeol was also found to trigger G1 cell cycle arrest through up-regulation of the expression of CDKN2A, but not p21, resulting in inhibition of CyclinD1. In an ex vivo platform Lupeol was found to impart a potent antitumor response as defined by inhibition of Ki67 expression, decreased cell viability and concomitant activation (cleavage) of Caspase-3. Finally, we found that Lupeol can re-sensitize primary head and neck squamous cell carcinoma (HNSCC) tumor samples that had clinically progressed under a Cisplatin treatment regimen. Together, our data indicate that Lupeol may orchestrate a bifurcated regulation of neoplastic growth and apoptosis in head and neck cancers and may serve as a promising agent for the management of tumors that have progressed on a platinum-based treatment regimen.

Journal ArticleDOI
TL;DR: A combined gene expression signature of AKR1B10 (low) and AKR 1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors, and they may have prognostic implications.
Abstract: Aldo-keto reductases (including AKR1B1 and AKR1B10) constitute a family of oxidoreductases that have been implicated in the pathophysiology of diabetes and cancer, including colorectal cancer (CRC). Available data indicate that, despite their similarities in structure and enzymatic functions, their roles in CRC may be divergent. Here, we aimed to determine the expression and functional implications of AKR1B1 and AKR1B10 in CRC. AKR1B1 and AKR1B10 gene expression levels were analyzed using publicly available microarray data and ex vivo CRC-derived cDNA samples. Gene Set Enrichment Analysis (GSEA), The Cancer Genome Atlas (TCGA) RNA-seq data and The Cancer Proteome Atlas (TCPA) proteome data were analyzed to determine the effect of high and low AKR1B1 and AKR1B10 expression levels in CRC patients. Proliferation, cell cycle progression, cellular motility, adhesion and inflammation were determined in CRC-derived cell lines in which these genes were either exogenously overexpressed or silenced. We found that the expression of AKR1B1 was unaltered, whereas that of AKR1B10 was decreased in primary CRCs. GSEA revealed that, while high AKR1B1 expression was associated with increased cell cycle progression, cellular motility and inflammation, high AKR1B10 expression was associated with a weak inflammatory phenotype. Functional studies carried out in CRC-derived cell lines confirmed these data. Microarray data analysis indicated that high expression levels of AKR1B1 and AKR1B10 were significantly associated with shorter and longer disease-free survival rates, respectively. A combined gene expression signature of AKR1B10 (low) and AKR1B1 (high) showed a better prognostic stratification of CRC patients independent of confounding factors. Despite their similarities, the expression levels and functions of AKR1B1 and AKR1B10 are highly divergent in CRC, and they may have prognostic implications.

Journal ArticleDOI
TL;DR: It is concluded that targeting of CXCR4 and FAK may overcome ABCB1 and ABCC1-dependent DOX resistance in NSCLC cells and that simultaneous treatment of these cells with DOX may potentiate the anti-invasive effects of CXM4 andFAK inhibitors.
Abstract: Current high lung cancer mortality rates are mainly due to the occurrence of metastases and therapeutic resistance. Therefore, simultaneous targeting of these processes may be a valid approach for the treatment of this type of cancer. Here, we assessed relationships between CXC chemokine receptor type 4 (CXCR4) and focal adhesion kinase (FAK) gene expression levels and expression levels of the drug resistance-related genes ABCB1 and ABCC1, and tested the potential of CXCR4 and FAK inhibitors to reverse doxorubicin (DOX) resistance and to decrease the invasive capacity of non-small cell lung carcinoma (NSCLC) cells. qRT-PCR was used for gene expression analyses in primary lung tissue samples obtained from 30 NSCLC patients and the human NSCLC-derived cell lines NCI-H460, NCI-H460/R and COR-L23. MTT, flow cytometry, cell death and β-galactosidase activity assays were used to assess the in vitro impact of CXCR4 and FAK inhibitors on DOX sensitivity. In addition, invasion and gelatin degradation assays were used to assess the in vitro impact of the respective inhibitors on metastasis-related processes in combination with DOX treatment. We found that ABCB1 over-expression was significantly associated with CXCR4 and FAK over-expression, whereas ABCC1 over-expression was associated with increased FAK expression. We also found that CXCR4 and FAK inhibitors strongly synergized with DOX in reducing cell viability, arresting the cell cycle in the S or G2/M phases and inducing senescence. Additionally, we found that DOX enhanced the anti-invasive potential of CXCR4 and FAK inhibitors by reducing gelatin degradation and invasion. From our data we conclude that targeting of CXCR4 and FAK may overcome ABCB1 and ABCC1-dependent DOX resistance in NSCLC cells and that simultaneous treatment of these cells with DOX may potentiate the anti-invasive effects of CXCR4 and FAK inhibitors.

Journal ArticleDOI
TL;DR: It is concluded that riluzole may be used in combination with cisplatin to reduce chemo-resistance in colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells.
Abstract: The transition of cells from the epithelial to the mesenchymal state (EMT) plays an important role in tumor progression. EMT allows cells to acquire mobility, stem-like behavior and resistance to apoptosis and drug treatment. These features turn EMT into a central process in tumor biology. Ion channels are attractive targets for the treatment of cancer since they play critical roles in controlling a wide range of physiological processes that are frequently deregulated in cancer. Here, we investigated the role of ether-a-go-go-related 1 (hERG1) ion channels in the EMT of colorectal cancer cells. We studied the epithelial-mesenchymal profile of different colorectal cancer-derived cell lines and the expression of hERG1 potassium channels in these cell lines using real-time PCR. Next, we knocked down hERG1 expression in HCT116 cells using lentivirus mediated RNA interference and characterized the hERG1 silenced cells in vitro and in vivo. Finally, we investigated the capacity of riluzole, an ion channel-modulating drug used in humans to treat amyotrophic lateral sclerosis, to reduce the resistance of the respective colorectal cancer cells to the chemotherapeutic drug cisplatin. We found that of the colorectal cancer-derived cell lines tested, HCT116 showed the highest mesenchymal profile and a high hERG1 expression. Subsequent hERG1 expression knockdown induced a change in cell morphology, which was accompanied by a reduction in the proliferative and tumorigenic capacities of the cells. Notably, we found that hERG1expression knockdown elicited a reversion of the EMT profile in HCT116 cells with a reacquisition of the epithelial-like profile. We also found that riluzole increased the sensitivity of HCT116 cisplatin-resistant cells to cisplatin. Our data indicate that hERG1 plays a role in the EMT of colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells. In addition, we conclude that riluzole may be used in combination with cisplatin to reduce chemo-resistance in colorectal cancer cells.

Journal ArticleDOI
TL;DR: This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived, and suggests that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in particular MSH2 and MLH1.
Abstract: Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS) The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas In differentiated NTera2 cells we found a significantly (p < 005) lower expression of the MMR and pluripotency factors, as well as a reduced MMR activity and cisplatin sensitivity, compared to undifferentiated NTera2 cells Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p < 0001) reduced cisplatin sensitivity This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis

Journal ArticleDOI
TL;DR: It is hypothesized that drugs that have already been approved for specific uses in clinical practice, but have not been intended for the treatment of cancer, may have a potential to change the ERα cellular content in ERα+ BC cells without necessarily acting through ERα.
Abstract: Dear Editor, Most breast cancers (BC) are estrogen receptor αpositive (ERα+) at diagnosis. This ERα positivity drives the therapeutic approach for this disease, which often consists of endocrine therapy (ET). 4OH-Tamoxifen and fulvestrant (ICI182,780) are two ET drugs that render tumor cells insensitive to 17β-estradiol (E2)-dependent proliferative stimuli and, by doing so, hamper BC progression. ET treatment has, however, its limitations (i.e., serious side-effects in different organs) and often results in therapy-resistance and tumor recurrence [1]. In the past, major efforts have been put into drug discovery with the aim to identify novel selective ER modulators (SERMs such as 4OH-tamoxifen) or selective ER downregulators (SERDs such as fulvestrant) for clinical use [2]. In spite of its limitations, however, to date 4OHtamoxifen and fulvestrant remain the best pharmacological options for ERα+ BC. Thus, there is an urgent need for novel therapeutic BC drugs. Since in ERα+ BC cells E2 insensitivity and/ or cell death can be caused by the manipulation of intracellular ERα levels through the targeting of ERα unrelated cellular pathways that can modify the ERα content [3], the engagement of ERα with specific molecules (e.g., 4OH-tamoxifen and fulvestrant) is not an absolute pre-requisite for modulating receptor levels. Rather, the regulation of intracellular ERα content possesses an intrinsic weakness [4]: factors (e.g., ERα ligands/non ERα-related molecules) that deregulate the mechanisms by which BC cells dynamically control ERα abundance can inhibit E2-dependent proliferation. Thus, the modulation of intracellular ERα levels may be considered as a pharmacological target and its deregulation may hinder E2:ERα signaling and inhibit BC progression. Based on this notion, we hypothesized that drugs that have already been approved for specific uses in clinical practice, but have not been intended for the treatment of cancer (off label drugs), may have a potential to change the ERα cellular content in ERα+ BC cells without necessarily acting through ERα. Consequently, we applied an FDA-approved compound library to ERα+ ductal breast carcinoma-derived cells (MCF-7). These cells were treated with each compound (0.1 μM) for 1 h before a 24 h E2 (1 nM) treatment. The subsequent screening procedure was designed to evaluate both intracellular ERα and cathepsin D (an ERα transcriptional target) levels by Western blotting to contemporarily identify molecules that may potentially deregulate intracellular ERα levels and ERα transcriptional activity (i.e., E2induced cathepsin D expression). We found that emetine, an alkaloid produced by ipecac roots and used, among others, as an anti-parasitic and contraception molecule [5, 6], induced a reduction in intracellular ERα levels in MCF-7 cells and prevented the ability of E2 to trigger * Filippo Acconcia filippo.acconcia@uniroma3.it

Journal ArticleDOI
TL;DR: A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome, and the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Abstract: Background Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens.

Journal ArticleDOI
TL;DR: It is concluded that ERK1/2 signaling pathway inhibition by silymarin and silibinin increases the expression of the pro-apoptotic Bcl-2 family member Bim which, subsequently, induces mitochondria-mediated apoptosis in salivary gland cancer-derived cells.
Abstract: Approximately 20% of all salivary gland cancer patients who are treated with current treatment modalities will ultimately develop metastases. Its most common form, mucoepidermoid carcinoma (MEC) is a highly aggressive tumor with an overall 5-year survival rate of ~30%. Until now, several chemotherapeutic drugs have been tested for the treatment of salivary gland tumors, but the results have been disappointing and the drugs often cause unwanted side effects. Therefore, several recent studies have focused on the potential of alternative and/or complementary therapeutic options, including the use of silymarin. The effects of silymarin and its active component silibinin on salivary gland cancer-derived MC3 and HN22 cells and their underlying molecular mechanisms were examined using trypan blue exclusion, 4′-6-diamidino-2-phenylindole (DAPI) staining, Live/Dead, Annexin V/PI staining, mitochondrial membrane potential (ΔΨm) measurement, quantitative RT-PCR, soft agar colony formation and Western blotting analyses. We found that silymarin and silibinin dramatically increased the expression of the pro-apoptotic protein Bim in a concentration- and time-dependent manner and, concomitantly, induced apoptosis in MC3 and HN22 cells. We also found that ERK1/2 signaling inhibition successfully sensitized these cells to the apoptotic effects of silymarin and silibinin, which indicates that the ERK1/2 signaling pathway may act as an upstream regulator that modulates the silymarin/silibinin-induced Bim signaling pathway. Taken together, we conclude that ERK1/2 signaling pathway inhibition by silymarin and silibinin increases the expression of the pro-apoptotic Bcl-2 family member Bim which, subsequently, induces mitochondria-mediated apoptosis in salivary gland cancer-derived cells.

Journal ArticleDOI
TL;DR: The current results suggest that the application of HDACi in combination with drugs that target DNMT may represent a promising option for the treatment of medulloblastoma.
Abstract: Medulloblastomas are aggressive brain malignancies. While considerable progress has been made in the treatment of medulloblastoma patients with respect to overall survival, these patients are still at risk of developing neurologic and cognitive deficits as a result of anti-cancer therapies. It is hypothesized that targeted molecular therapies represent a better treatment option for medulloblastoma patients. Therefore, the aim of the present study was to test a panel of epigenetic drugs for their effect on medulloblastoma cells under mild hypoxic conditions that reflect the physiological concentrations of oxygen in the brain. Protein levels of histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1) in medulloblastoma-derived cells (Daoy and D283 Med), as well as in developing and differentiated brain cells, were determined and compared. Class I and II histone deacetylase inhibitors (HDACi) and a DNMT inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC), were applied to Daoy and D283 Med cells, and their effects were studied using viability, apoptosis and cancer sphere assays. We found that in HDAC1 and DNMT1 overexpressing medulloblastoma-derived cells, cell death was induced under various epigenetic drug conditions tested. At low HDACi concentrations, however, a pro-proliferative effect was observed. Parthenolide, a drug that affects cancer stem cells, was found to be efficient in inducing cell death in both cell lines tested. In contrast, we found that Daoy cells were more resistant to 5-aza-dC than D283 Med cells. When suberoylanilide hydroxamic acid (SAHA) and parthenolide were individually applied to both cell lines in combination with 5-aza-dC, a synergistic effect on cell survival was observed. Our current results suggest that the application of HDACi in combination with drugs that target DNMT may represent a promising option for the treatment of medulloblastoma.

Journal ArticleDOI
TL;DR: Gene expression data indicated that histamine-relevant inflammatory and environmental elements may participate in the regulation of oncogenes, possibly via mast cells, as crucial components of the tumor microenvironment.
Abstract: Recent reports indicate that histamine and its novel, high-affinity histamine H4 receptor (H4R) play a role in carcinogenesis, and thus H4R signalling has become a focus of increasing interest in the pathogenesis of many cancers. The roles of H4R in oral epithelial dysplasia (OED) and oral tongue squamous cell carcinoma (OTSCC) are unknown. The purpose of this study was to assess H4R expression in OTSCC patients and in OTSCC-derived cell lines. Biopsies taken from OED, OTSCC and healthy oral mucosa were studied by immunostaining. Primary human oral keratinocytes (HOKs) and two OTSCC-derived cell lines (HSC-3 and SCC-25) were used for the in vitro studies. Quantitative real-time PCR was used to measure oncogene expression in the stimulated HOKs. We found that H4R-immunoreactivity was significantly reduced in the OED and OTSCC samples, especially in the samples with higher histopathological grades and noticeably increased mast cell counts. The presence of H4R in HSC-3 cells had clearly waned, in contrast to the HOKs. Gene expression data indicated that histamine-relevant inflammatory and environmental elements may participate in the regulation of oncogenes. Our results suggest an association between H4R and oral carcinogenesis. Furthermore, our findings raise a potential implication of histamine-mediated factors in the regulation of oncogenes, possibly via mast cells, as crucial components of the tumor microenvironment. The identification of new elements that govern oral cancer development is highly relevant for the development of novel therapeutic approaches in OTSCC.