scispace - formally typeset
Search or ask a question

Showing papers in "Glia in 2012"


Journal ArticleDOI
01 May 2012-Glia
TL;DR: This work compares phenotypic and functional properties of microglia derived from the adult human CNS with macrophages derived from peripheral blood monocytes in response to M1 and M2 polarizing conditions to delineate distinctive properties ofmicroglia compared with exogenous myeloid cells in response with signals derived from an inflammatory environment in the CNS.
Abstract: Both microglia, the resident myeloid cells of the CNS parenchyma, and infiltrating blood-derived macrophages participate in inflammatory responses in the CNS. Macrophages can be polarized into M1 and M2 phenotypes, which have been linked to functional properties including production of inflammation association molecules and phagocytic activity. We compare phenotypic and functional properties of microglia derived from the adult human CNS with macrophages derived from peripheral blood monocytes in response to M1 and M2 polarizing conditions. Under M1 conditions, microglia and macrophages upregulate expression of CCR7 and CD80. M2 treatment of microglia-induced expression of CD209 but not additional markers CD23, CD163, and CD206 expressed by M2 macrophages. M1-polarizing conditions induced production of IL-12p40 by both microglia and macrophages; microglia produced higher levels of IL-10 under M1 conditions than did macrophages. Under M2 conditions, microglia ± LPS produced comparable levels of IL-10 under M1 conditions whereas IL-10 was induced by LPS in M2 macrophages. Myelin phagocytosis was greater in microglia than macrophages under all conditions; for both cell types, activity was higher for M2 cells. Our findings delineate distinctive properties of microglia compared with exogenous myeloid cells in response to signals derived from an inflammatory environment in the CNS.

420 citations


Journal ArticleDOI
01 Feb 2012-Glia
TL;DR: The notion that the primary function of microglia is the maintenance of tissue homeostasis and the support of regeneration already at the earliest stages in the development of demyelinating lesions is reinforced.
Abstract: In multiple sclerosis, endogenous oligodendrocyte precursor cells (OPCs) attempt to remyelinate areas of myelin damage During disease progression, however, these attempts fail It has been suggested that modulating the inflammatory environment of the lesion might provide a promising therapeutic approach to promote endogenous remyelination Microglia are known to play a central role in neuroinflammatory processes To investigate the microglia phenotype that supports remyelination, we performed genome-wide gene expression analysis of microglia from the corpus callosum during demyelination and remyelination in the mouse cuprizone model, in which remyelination spontaneously occurs after an episode of toxin-induced primary demyelination We provide evidence for the existence of a microglia phenotype that supports remyelination already at the onset of demyelination and persists throughout the remyelination process Our data show that microglia are involved in the phagocytosis of myelin debris and apoptotic cells during demyelination Furthermore, they express a cytokine and chemokine repertoire enabling them to activate and recruit endogenous OPCs to the lesion site and deliver trophic support during remyelination This study not only provides a detailed transcriptomic analysis of the remyelination-supportive microglia phenotype but also reinforces the notion that the primary function of microglia is the maintenance of tissue homeostasis and the support of regeneration already at the earliest stages in the development of demyelinating lesions © 2011 Wiley Periodicals, Inc

301 citations


Journal ArticleDOI
01 Jul 2012-Glia
TL;DR: It is proposed that the primary function of perisynaptic glial processes is to create an “astroglial cradle” that shields the synapse from a multitude of extrasynaptic signaling events and provides for multifaceted support and long‐term plasticity of synaptic contacts through variety of mechanisms, which may not necessarily involve the release of “glio” transmitters.
Abstract: The neuronal doctrine, developed a century ago regards neuronal networks as the sole substrate of higher brain function. Recent advances in glial physiology have promoted an alternative hypothesis, which places information processing in the brain into integrated neuronal-glial networks utilizing both binary (neuronal action potentials) and analogue (diffusional propagation of second messengers/metabolites through gap junctions or transmitters through the interstitial space) signal encoding. It has been proposed that the feed-forward and feed-back communication between these two types of neural cells, which underlies information transfer and processing, is accomplished by the release of neurotransmitters from neuronal terminals as well as from astroglial processes. Understanding of this subject, however, remains incomplete and important questions and controversies require resolution. Here we propose that the primary function of perisynaptic glial processes is to create an "astroglial cradle" that shields the synapse from a multitude of extrasynaptic signaling events and provides for multifaceted support and long-term plasticity of synaptic contacts through variety of mechanisms, which may not necessarily involve the release of "glio" transmitters.

274 citations


Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: An overview of the normal function of astrocytes in regulating extracellular glutamate homeostasis, neurotransmitter supply, and excitotoxicity is provided and the potential role reactive gliosis may play in the pathophysiology of epilepsy is discussed.
Abstract: Astrocytes play a critical role in regulation of extracellular neurotransmitter levels in the central nervous system. This function is particularly prominent for the excitatory amino acid glutamate, with estimates that 80-90% of extracellular glutamate uptake in brain is through astrocytic glutamate transporters. This uptake has significance both in regulation of the potential toxic accumulation of extracellular glutamate and in normal resupply of inhibitory and excitatory synapses with neurotransmitter. This resupply of neurotransmitter is accomplished by astroglial uptake of glutamate, transformation of glutamate to glutamine by the astrocytic enzyme glutamine synthetase (GS), and shuttling of glutamine back to excitatory and inhibitory neurons via specialized transporters. Once in neurons, glutamine is enzymatically converted back to glutamate, which is utilized for synaptic transmission, either directly, or following decarboxylation to γ-aminobutyric acid. Many neurologic and psychiatric conditions, particularly epilepsy, are accompanied by the development of reactive gliosis, a pathology characterized by anatomical and biochemical plasticity in astrocytes, accompanied by proliferation of these cells. Among the biochemical changes evident in reactive astrocytes is a downregulation of several of the important regulators of the glutamine-glutamate cycle, including GS, and possibly also glutamate transporters. This downregulation may have significance in contributing both to the aberrant excitability and to the altered neuropathology characterizing epilepsy. In the present review, we provide an overview of the normal function of astrocytes in regulating extracellular glutamate homeostasis, neurotransmitter supply, and excitotoxicity. We further discuss the potential role reactive gliosis may play in the pathophysiology of epilepsy.

266 citations


Journal ArticleDOI
01 Apr 2012-Glia
TL;DR: The results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity‐driven central mechanisms that result from an age‐related loss of peripheral sensitivity.
Abstract: Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models.

255 citations


Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: Molecular and physiological experimental data demonstrating that the function of astrocytes is altered due to direct exposure to serum albumin, mediated by transforming growth factor beta signaling are summarized.
Abstract: Brain insults, including traumatic and ischemic injuries, are frequently followed by acute seizures and delayed development of epilepsy. Dysfunction of the blood-brain barrier (BBB) is a hallmark of brain insults and is usually surrounding the core lesion. Recent studies from several laboratories confirmed that vascular pathology is involved in the development of epilepsy and demonstrate a key role for astroglia in this process. In this review, we focus on glia-related mechanisms linking vascular pathology, and specifically BBB dysfunction, to seizures and epilepsy. We summarize molecular and physiological experimental data demonstrating that the function of astrocytes is altered due to direct exposure to serum albumin, mediated by transforming growth factor beta signaling. We discuss the reported changes and their potential role in the observed hyperexcitability as well as potential implications of these findings for the future development of new diagnostic modalities and treatments to allow a full implementation of the gained knowledge for the benefit of patients with epilepsy.

203 citations


Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: Current evidence regarding the role of astrocytes in the regulation of the innate immune responses in epilepsy is reviewed, highlighting specific inflammatory pathways (such as interleukin‐1β/toll‐like receptor 4) that could be potential targets for antiepileptic, disease‐modifying therapeutic strategies.
Abstract: Astrocytes, the major glial cell type of the central nervous system (CNS), are known to play a major role in the regulation of the immune/inflammatory response in several human CNS diseases. In epilepsy-associated pathologies, the presence of astrogliosis has stimulated extensive research focused on the role of reactive astrocytes in the pathophysiological processes that underlie the development of epilepsy. In brain tissue from patients with epilepsy, astrocytes undergo significant changes in their physiological properties, including the activation of inflammatory pathways. Accumulating experimental evidence suggests that proinflammatory molecules can alter glio-neuronal communications contributing to the generation of seizures and seizure-related neuronal damage. In particular, both in vitro and in vivo data point to the role of astrocytes as both major source and target of epileptogenic inflammatory signaling. In this context, understanding the astroglial inflammatory response occurring in epileptic brain tissue may provide new strategies for targeting astrocyte-mediated epileptogenesis. This article reviews current evidence regarding the role of astrocytes in the regulation of the innate immune responses in epilepsy. Both clinical observations in drug-resistant human epilepsies and experimental findings in clinically relevant models will be discussed and elaborated, highlighting specific inflammatory pathways (such as interleukin-1β/toll-like receptor 4) that could be potential targets for antiepileptic, disease-modifying therapeutic strategies.

180 citations


Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: Adenosine augmentation therapies constitute a powerful approach for seizure prevention, which is effective in models of epilepsy that are resistant to conventional antiepileptic drugs.
Abstract: Extracellular levels of the brain's endogenous anticonvulsant and neuroprotectant adenosine largely depend on an astrocyte-based adenosine cycle, comprised of ATP release, rapid degradation of ATP into adenosine, and metabolic reuptake of adenosine through equilibrative nucleoside transporters and phosphorylation by adenosine kinase (ADK) Changes in ADK expression and activity therefore rapidly translate into changes of extracellular adenosine, which exerts its potent anticonvulsive and neuroprotective effects by activation of pre- and postsynaptic adenosine A(1) receptors Increases in ADK increase neuronal excitability, whereas decreases in ADK render the brain resistant to seizures and injury Importantly, ADK was found to be overexpressed and associated with astrogliosis and spontaneous seizures in rodent models of epilepsy, as well as in human specimen resected from patients with hippocampal sclerosis and temporal lobe epilepsy Several lines of evidence indicate that overexpression of astroglial ADK and adenosine deficiency are pathological hallmarks of the epileptic brain Consequently, adenosine augmentation therapies constitute a powerful approach for seizure prevention, which is effective in models of epilepsy that are resistant to conventional antiepileptic drugs The adenosine kinase hypothesis of epileptogenesis suggests that adenosine dysfunction in epilepsy undergoes a biphasic response: an acute surge of adenosine that can be triggered by any type of injury might contribute to the development of astrogliosis via adenosine receptor-dependent and -independent mechanisms Astrogliosis in turn is associated with overexpression of ADK, which was shown to be sufficient to trigger spontaneous recurrent electrographic seizures Thus, ADK emerges as a promising target for the prediction and prevention of epilepsy

179 citations


Journal ArticleDOI
01 Apr 2012-Glia
TL;DR: It is demonstrated that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders, as measured by three markers: PSD‐95, drebin, and synaptophysin.
Abstract: The e4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.

174 citations


Journal ArticleDOI
01 Mar 2012-Glia
TL;DR: Invasive injury in the adult zebrafish telencephalon may provide a useful model to untangle the molecular mechanisms involved in these beneficial glial reactions, and suggest that the specific glial environment in theAdult zebra fish telENCEphalon is not only permissive for long‐term neuronal survival, but avoids scar formation.
Abstract: Reactive glia, including astroglia and oligodendrocyte progenitors (OPCs) are at the core of the reaction to injury in the mammalian brain with initially beneficial and later partially adverse functions such as scar formation. Given the different glial composition in the adult zebrafish brain with radial ependymoglia but no parenchymal astrocytes, we examined the glial response to an invasive stab wound injury model in the adult zebrafish telencephalon. Strikingly, already a few days after injury the wound was closed without any scar tissue. Similar to mammals, microglia cells reacted first and accumulated close to the injury site, while neither GFAP+ radial ependymoglia nor adult OPCs were recruited to the injury site. Moreover, OPCs failed to increase their proliferation after this injury, while the number of proliferating GFAP+ glia was increased until 7 days after injury. Importantly, neurogenesis was also increased after injury, generating additional neurons recruited to the parenchyma which survived for several months. Thus, these data suggest that the specific glial environment in the adult zebrafish telencephalon is not only permissive for long-term neuronal survival, but avoids scar formation. Invasive injury in the adult zebrafish telencephalon may therefore provide a useful model to untangle the molecular mechanisms involved in these beneficial glial reactions.

171 citations


Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization, and function of astroglial inwardly rectifying K+ (Kir) channels, particularly Kir4.1, which is suspected to entail impaired K+ buffering.
Abstract: Astrocytes are endowed with the machinery to sense and respond to neuronal activity. Recent work has demonstrated that astrocytes play important physiological roles in the CNS, e.g., they synchronize action potential firing, ensure ion homeostasis, transmitter clearance and glucose metabolism, and regulate the vascular tone. Astrocytes are abundantly coupled through gap junctions, which is a prerequisite to redistribute elevated K(+) from sites of excessive neuronal activity to sites of lower extracellular K(+) concentration. Recent studies identified dysfunctional astrocytes as crucial players in epilepsy. Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization, and function of astroglial inwardly rectifying K(+) (Kir) channels, particularly Kir4.1, which is suspected to entail impaired K(+) buffering. Gap junctions in astrocytes appear to play a dual role: on the one hand they counteract the generation of hyperactivity by facilitating clearance of elevated extracellular K(+) levels while in contrast, they constitute a pathway for energetic substrate delivery to fuel neuronal (hyper)activity. Recent work suggests that astrocyte dysfunction is causative of the generation or spread of seizure activity. Thus, astrocytes should be considered as promising targets for alternative antiepileptic therapies.

Journal ArticleDOI
01 Nov 2012-Glia
TL;DR: Findings suggest Cx43 is critically linked to the development of central neuropathic pain following acute SCI, and support an important role of astrocytes in theDevelopment of chronic pain.
Abstract: Chronic neuropathic pain is a frequent consequence of spinal cord injury (SCI). Yet despite recent advances, upstream releasing mechanisms and effective therapeutic options remain elusive. Previous studies have demonstrated that SCI results in excessive ATP release to the peritraumatic regions and that purinergic signaling, among glial cells, likely plays an essential role in facilitating inflammatory responses and nociceptive sensitization. We sought to assess the role of connexin 43 (Cx43) as a mediator of CNS inflammation and chronic pain. To determine the extent of Cx43 involvement in chronic pain, a weight-drop SCI was performed on transgenic mice with Cx43/Cx30 deletions. SCI induced robust and persistent neuropathic pain including heat hyperalgesia and mechanical allodynia in wild-type control mice, which developed after 4 weeks and was maintained after 8 weeks. Notably, SCI-induced heat hyperalgesia and mechanical allodynia were prevented in transgenic mice with Cx43/Cx30 deletions, but fully developed in transgenic mice with only Cx30 deletion. SCI-induced gliosis, detected as upregulation of glial fibrillary acidic protein in the spinal cord astrocytes at different stages of the injury, was also reduced in the knockout mice with Cx43/Cx30 deletions, when compared with littermate controls. In comparison, a standard regimen of post-SCI treatment of minocycline attenuated neuropathic pain to a significantly lesser degree than Cx43 deletion. These findings suggest Cx43 is critically linked to the development of central neuropathic pain following acute SCI. Since Cx43/Cx30 is expressed by astrocytes, these findings also support an important role of astrocytes in the development of chronic pain.

Journal ArticleDOI
01 Mar 2012-Glia
TL;DR: It is demonstrated that Erk1/2 and mTOR signaling sequentially regulates distinct stages of OL progenitor differentiation and suggest that cells in the OL‐lineage require distinct signaling mechanisms to transition through specific stages of their development.
Abstract: Myelination is the culmination of a complex process in which oligodendrocyte (OL) progenitors transition through defined stages in a well-coordinated differentiation program. The signaling mechanisms that regulate this progression are poorly understood. Here we investigate the role of extracellular signal-regulated-kinase-1,-2 (Erk1/2) and the mammalian target of rapamycin (mTOR), downstream effectors of the Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways, at specific stages of OL development in vitro. Using a panel of developmental stage-specific antigenic markers and pharmacological inhibitors, we provide evidence that Erk1/2 signaling regulates transition of early progenitors to the late progenitor stage and, as a consequence, to the immature OL stage, but not the transition of immature OL to the mature OL stage. In contrast, mTOR signaling is not required for early progenitor transition to late progenitor stage. Surprisingly, it is also not required for the transition of late progenitors to terminally differentiated immature OLs, as has been reported previously, but is required for the next sequential transition of immature OLs to the mature OL stage. Furthermore, mTOR signaling regulates OL cytoskeletal organization and major myelin protein expression. These in vitro findings correlate with our in vivo data showing that inhibition of mTOR by rapamycin injection attenuated the onset of myelination in the early postnatal brain. Thus, these studies demonstrate that Erk1/2 and mTOR signaling sequentially regulates distinct stages of OL progenitor differentiation and suggest that cells in the OL-lineage require distinct signaling mechanisms to transition through specific stages of their development. © 2011 Wiley Periodicals, Inc.

Journal ArticleDOI
01 Jan 2012-Glia
TL;DR: The present study identifies the mechanism by which glucose increases [Ca2+]i in tanycytes and establishes that Cx43 hemichannels can be rapidly activated under physiological conditions by the sequential activation of glucosensing proteins in normal tanyCytes.
Abstract: The ventromedial hypothalamus is involved in regulating feeding and satiety behavior, and its neurons interact with specialized ependymal-glial cells, termed tanycytes. The latter express glucose-sensing proteins, including glucose transporter 2, glucokinase, and ATP-sensitive K(+) (K(ATP) ) channels, suggesting their involvement in hypothalamic glucosensing. Here, the transduction mechanism involved in the glucose-induced rise of intracellular free Ca(2+) concentration ([Ca(2+) ](i) ) in cultured β-tanycytes was examined. Fura-2AM time-lapse fluorescence images revealed that glucose increases the intracellular Ca(2+) signal in a concentration-dependent manner. Glucose transportation, primarily via glucose transporters, and metabolism via anaerobic glycolysis increased connexin 43 (Cx43) hemichannel activity, evaluated by ethidium uptake and whole cell patch clamp recordings, through a K(ATP) channel-dependent pathway. Consequently, ATP export to the extracellular milieu was enhanced, resulting in activation of purinergic P2Y(1) receptors followed by inositol trisphosphate receptor activation and Ca(2+) release from intracellular stores. The present study identifies the mechanism by which glucose increases [Ca(2+) ](i) in tanycytes. It also establishes that Cx43 hemichannels can be rapidly activated under physiological conditions by the sequential activation of glucosensing proteins in normal tanycytes.

Journal ArticleDOI
01 Feb 2012-Glia
TL;DR: The question arises in how far regionalization of both the glia‐like precursor cells as well as of the glial cells determines site‐specific “neurogenic permissiveness” in the two neurogenic regions of the adult brain.
Abstract: Adult neurogenesis is an exceptional feature of the adult brain and in an intriguing way bridges between neuronal and glial neurobiology. Essentially, all classes of glial cells are directly or indirectly linked to this process. Cells with astrocytic features, for example, serve as radial glia-like stem cells in the two neurogenic regions of the adult brain, the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles, producing new neurons, create a microenvironment permissive for neurogenesis, and are themselves generated alongside the new neurons in an associated but independently regulated process. Oligodendrocytes are generated from precursor cells intermingled with those generating neurons in an independent lineage. NG2 cells have certain precursor cell properties and are found throughout the brain parenchyma. They respond to extrinsic stimuli and injury but do not generate neurons even though they can express some preneuronal markers. Microglia have positive and negative regulatory effects as constituents of the ‘‘neurogenic niche’’. Ependymal cells play incompletely understood roles in adult neurogenesis, but under certain conditions might exert (back-up) precursor cell functions. Glial contributions to adult neurogenesis can be direct or indirect and are mediated by mechanisms ranging from gap-junctional to paracrine and endocrine. As the two neurogenic regions differ between each other and both from the non-neurogenic rest of the brain, the question arises in how far regionalization of both the glia-like precursor cells as well as of the glial cells determines sitespecific ‘‘neurogenic permissiveness.’’ In any case, however, ‘‘neurogenesis’’ appears to be an essentially glial achievement. V

Journal ArticleDOI
11 Jun 2012-Glia
TL;DR: The studies show that the magnitude of myelin loss positively correlates with microgliosis in the cuprizone model, and the number of MHC class II expressing cells is higher in the white compared with the grey matter part of leucocortical lesions in MS.
Abstract: In multiple sclerosis (MS), gray matter pathology is characterized by less pronounced inflammation when compared with white matter lesions. Although regional differences in the cytoarchitecture may account for these differences, the amount of myelin debris in the cortex during a demyelinating event might also be contributory. To analyze the association between myelin debris levels and inflammatory responses, cortical areas with distinct and sparse myelination were analyzed for micro- and astrogliosis before and after cuprizone-induced demyelination in mice. In postmortem tissue of MS patients, leucocortical lesions were assessed for the type and level of inflammation in the cortical and white matter regions of the lesion. Furthermore, mice were injected intracerebrally with myelin-enriched debris, and the inflammatory response analyzed in white and grey matter areas. Our studies show that the magnitude of myelin loss positively correlates with microgliosis in the cuprizone model. In MS, the number of MHC class II expressing cells is higher in the white compared with the grey matter part of leucocortical lesions. Finally, direct application of myelin debris into the corpus callosum or cortex of mice induces profound and comparable inflammation in both regions. Our data suggest that myelin debris is an important variable in the inflammatory response during demyelinating events. Whether myelin-driven inflammation affects neuronal integrity remains to be clarified. © 2012 Wiley Periodicals, Inc.

Journal ArticleDOI
01 May 2012-Glia
TL;DR: It is demonstrated that C3 and Mac‐1 are involved in phagocytosis and clearance of fAβ by microglia, providing support for a potential beneficial role for microglIA and the complement system in AD pathogenesis.
Abstract: Complement components and their receptors are found within and around Aβ cerebral plaques in Alzheimer’s disease (AD). Microglia defend against pathogens through phagocytosis via complement component C3 and/or engagement of C3 cleavage product iC3b with complement receptor type 3 (CR3, Mac-1). Here we provide direct evidence that C3 and Mac-1 mediate, in part, phagocytosis and clearance of fibrillar amyloid-β (fAβ) by murine microglia in vitro and in vivo. Microglia took up not only synthetic fAβ42 but also amyloid cores from AD patients, transporting them to lysosomes in vitro. Fibrillar Aβ42 uptake was significantly attenuated by the deficiency or knockdown of C3 or Mac-1 and scavenger receptor class A ligands. In addition, C3 or Mac-1 knockdown combined with a scavenger receptor ligand, fucoidan, further attenutated fibrillar Aβ42 uptake by N9 microglia. Fluorescent fibrillar Aβ42 microinjected cortically was significantly higher in C3 and Mac-1 knockout mice compared to wild-type mice 5 days after surgery, indicating reduced clearance in vivo. Together, these results demonstrate that C3 and Mac-1 are involved in phagocytosis and clearance of fAβ by microglia, providing support for a potential beneficial role for microglia and the complement system in AD pathogenesis.

Journal ArticleDOI
01 May 2012-Glia
TL;DR: It is reported that adenosine A2A receptors (A2 AR) control the uptake of D‐aspartate in primary cultured astrocytes as well as in an ex vivo preparation enriched in glial plasmalemmal vesicles (gliosomes) from adult rats, whereas A1R and A3R were devoid of effects.
Abstract: Glutamate is the primary excitatory neurotransmitter in the central nervous system, where its toxic build-up leads to synaptic dysfunction and excitotoxic cell death that underlies many neurodegenerative diseases. Therefore, efforts have been made to understand the regulation of glutamate transporters, which are responsible for the clearance of extracellular glutamate. We now report that adenosine A(2A) receptors (A(2A) R) control the uptake of D-aspartate in primary cultured astrocytes as well as in an ex vivo preparation enriched in glial plasmalemmal vesicles (gliosomes) from adult rats, whereas A(1) R and A(3) R were devoid of effects. Thus, the acute exposure to the A(2A) R agonist, CGS 21680, inhibited glutamate uptake, an effect prevented by the A(2A) R antagonist, SCH 58261, and abbrogated in cultured astrocytes from A(2A) R knockout mice. Furthermore, the prolonged activation of A(2A) R lead to a cAMP/protein kinase A-dependent reduction of GLT-I and GLAST mRNA and protein levels, which leads to a sustained decrease of glutamate uptake. This dual mechanism of inhibition of glutamate transporters by astrocytic A(2A) R provides a novel candidate mechanism to understand the ability of A(2) (A) R to control synaptic plasticity and neurodegeneration, two conditions tightly associated with the control of extracellular glutamate levels by glutamate transporters.

Journal ArticleDOI
01 Oct 2012-Glia
TL;DR: This study demonstrates phenotypic changes of microglia associated with peripheral inflammation, and reveals tight regulation of responses to LPS and IFNγ as well as distinct microglial responses to IL‐4 and glucocorticoids.
Abstract: Much is still unknown about mechanisms underlying the phenotypical and functional versatility of human microglia. Therefore, we developed a rapid procedure to isolate pure microglia from postmortem human brain tissue and studied their immediate ex vivo phenotype and responses to key inflammatory mediators. Microglia were isolated, along with macrophages from the choroid plexus by tissue dissociation, density gradient separation, and selection with magnetic microbeads. By flow cytometry, microglia were identified by a CD11b(+) CD45(dim) phenotype and a smaller size compared with CD11b(+) CD45(high) macrophages. Interestingly, white matter microglia from donors with peripheral inflammation displayed elevated CD45 levels and increased size and granularity, but were still distinct from macrophages. The phenotype of isolated microglia was further specified by absent surface expression of CD14, CD200 receptor, and mannose receptor (MR, CD206), all of which were markedly expressed by macrophages. Microglia stimulated immediately after isolation with LPS and IFNγ failed to upregulate TNFα or CCR7. Notably, responsiveness to LPS and IFNγ was clearly instigated in microglia after overnight preculture, which coincided with a strong upregulation of CD14. Culture of microglia with IL-4 resulted in the induction of HLA-DR and CCL18 but not MR, whereas culture with dexamethasone did induce MR, in addition to CD163 and CCL18. In conclusion, this study demonstrates phenotypic changes of microglia associated with peripheral inflammation, and reveals tight regulation of responses to LPS and IFNγ as well as distinct microglial responses to IL-4 and glucocorticoids. These findings are of high relevance to studies on human microglia functioning in health and disease.

Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: This review focuses on the potential roles of the glial water channel aquaporin‐4 (AQP4) in modulation of brain excitability and in epilepsy.
Abstract: Recent studies have implicated glial cells in modulation of synaptic transmission, so it is plausible that glial cells may have a functional role in the hyperexcitability characteristic of epilepsy. Indeed, alterations in distinct astrocyte membrane channels, receptors, and transporters have all been associated with the epileptic state. This review focuses on the potential roles of the glial water channel aquaporin-4 (AQP4) in modulation of brain excitability and in epilepsy. We will review studies of mice lacking AQP4 (Aqp4(-/-) mice) or α-syntrophin (an AQP4 anchoring protein) and discuss the available human studies demonstrating alterations of AQP4 in human epilepsy tissue specimens. We will conclude with new studies of AQP4 regulation and discuss the potential role of AQP4 in the development of epilepsy (epileptogenesis). While many questions remain unanswered, the available data indicate that AQP4 and its molecular partners may represent important new therapeutic targets.

Journal ArticleDOI
01 Jul 2012-Glia
TL;DR: The electrophysiological and fluorescence imaging analyses performed on these cells fully support the previous pharmacological and Panx1 knockdown studies that showed profoundly lower dye uptake and ATP release than wild‐type untreated astrocytes and propose thatPanx1 channels serve as K+ sensors for changes in the extracellular milieu such as those occurring under pathological conditions.
Abstract: Pannexins (Panx1, 2, and 3) comprise a group of proteins expressed in vertebrates that share weak yet significant sequence homology with the invertebrate gap junction proteins, the innexins. In contrast to the other vertebrate gap junction protein family (connexin), pannexins do not form intercellular channels, but at least Panx1 forms nonjunctional plasma membrane channels. Panx1 is ubiquitously expressed and has been shown to form large conductance (500 pS) channels that are voltage dependent, mechanosensitive, and permeable to relatively large molecules such as ATP. Pharmacological and knockdown approaches have indicated that Panx1 is the molecular substrate for the so-called "hemichannel" originally attributed to connexin43 and that Panx1 is the pore-forming unit of the P2X(7) receptor. Here, we describe, for the first time, conductance and permeability properties of Panx1-null astrocytes. The electrophysiological and fluorescence imaging analyses performed on these cells fully support our previous pharmacological and Panx1 knockdown studies that showed profoundly lower dye uptake and ATP release than wild-type untreated astrocytes. As a consequence of decreased ATP paracrine signaling, intercellular calcium wave spread is altered in Panx1-null astrocytes. Moreover, we found that in astrocytes as in Panx1-expressing oocytes, elevated extracellular K(+) activates Panx1 channels independently of membrane potential. Thus, on the basis of our present findings and our previous report, we propose that Panx1 channels serve as K(+) sensors for changes in the extracellular milieu such as those occurring under pathological conditions.

Journal ArticleDOI
01 Aug 2012-Glia
TL;DR: The specific aim of this review is to provide an overview of the experimental findings that hinted at a direct role of Ca2+‐dependent gliotransmission in the generation of seizure‐like discharges in models of focal epilepsy and to emphasize the importance of developing new experimental tools that could help understand the amazing complexity of neuron‐astrocyte partnership in brain disorders.
Abstract: Studies performed over the last decade, in both animal models and human epilepsy, support the view that a defective K(+) buffering due to an altered expression of K(+) and aquaporin channels in astrocytes represents a possible causative factor of the pathological neuronal hyperexcitability in the epileptic brain. More recent studies, however, reappraised the role of neurons in epileptogenesis and suggested that Ca(2+)-dependent gliotransmission directly contributes to the excessive neuronal synchronization that predisposes the brain network to seizures. Significant support for this view comes from the finding that astrocytes from hyperexcitable networks respond to neuronal signals with massive Ca(2+) elevations and generate a recurrent excitatory loop with neurons that has the potential to promote a focal seizure. The specific aim of this review is on the one hand, to provide an overview of the experimental findings that hinted at a direct role of Ca(2+)-dependent gliotransmission in the generation of seizure-like discharges in models of focal epilepsy; and on the other hand, to emphasize the importance of developing new experimental tools that could help us to understand the amazing complexity of neuron-astrocyte partnership in brain disorders.

Journal ArticleDOI
01 Apr 2012-Glia
TL;DR: It is concluded that amyloid plaque deposition increases proliferation of microglia around plaques but does not affect the proliferation of cortical oligodendrocyte precursor cells.
Abstract: Plaque deposition in Alzheimer's disease (AD) is known to decrease proliferation in neurogenic niches in AD mouse models, but the effects on cell proliferation and differentiation in other brain areas have not been studied in detail. We analyzed cell proliferation in the cortex of wild type (WT) and APPswePS1dE9 transgenic (AD) mice at different ages. Mice were studied shortly after the last BrdU injection (BrdU[ST]). In AD mice, the number of proliferating cells increased fourfold, coinciding with plaque appearance and its associated reactive gliosis and activation of microglia. An increase in the number of BrdU[ST]-cells expressing markers for activated microglia is underlying the enhanced proliferation. Cortical reactive astrocytes did not become proliferative since BrdU[ST]-cells were negative for different astrocyte-specific markers. The number of Olig2-positive oligodendrocyte precursor cells was unchanged. Four weeks after the last BrdU application, the number of BrdU[LT]-cells with an activated microglia signature was still enhanced in AD mice. None of the newborn cells had differentiated into oligodendrocytes, astrocytes, or neurons. On the basis of these observations, we conclude that amyloid plaque deposition increases proliferation of microglia around plaques but does not affect the proliferation of cortical oligodendrocyte precursor cells. No evidence was found for damage-induced proliferation of reactive astrocytes or for a redirected neurogenesis from the subventricular zone. The proliferation of microglia contributes to the rapid accumulation of microglia around plaques and may play a role in limitating plaque expansion.

Journal ArticleDOI
01 Apr 2012-Glia
TL;DR: Glial Kir have increasing importance in K+ clearance at higher levels of axonal activity, helping to maintain the physiological [K+]o ceiling and ensure the fidelity of signaling between the retina and brain.
Abstract: Uptake of K(+) released by axons during action potential propagation is a major function of astrocytes. Here, we demonstrate the importance of glial inward rectifying potassium channels (Kir) in regulating extracellular K(+) ([K(+)](o)) and axonal electrical activity in CNS white matter of the mouse optic nerve. Increasing optic nerve stimulation frequency from 1 Hz to 10-35 Hz for 120 s resulted in a rise in [K(+)](o) and consequent decay in the compound action potential (CAP), a measure of reduced axonal activity. On cessation of high frequency stimulation, rapid K(+) clearance resulted in a poststimulus [K(+)](o) undershoot, followed by a slow recovery of [K(+)](o) and the CAP, which were more protracted with increasing stimulation frequency. Blockade of Kir (100 μM BaCl(2)) slowed poststimulus recovery of [K(+)](o) and the CAP at all stimulation frequencies, indicating a primary function of glial Kir was redistributing K(+) to the extracellular space to offset active removal by Na(+)-K(+) pumps. At higher levels of axonal activity, Kir blockade also increased [K(+)](o) accumulation, exacerbating the decline in the CAP and impeding its subsequent recovery. In the Kir4.1-/- mouse, astrocytes displayed a marked reduction of inward currents and were severely depolarized, resulting in retarded [K(+)](o) regulation and reduced CAP. The results demonstrate the importance of glial Kir in K(+) spatial buffering and sustaining axonal activity in the optic nerve. Glial Kir have increasing importance in K(+) clearance at higher levels of axonal activity, helping to maintain the physiological [K(+)](o) ceiling and ensure the fidelity of signaling between the retina and brain.

Journal ArticleDOI
01 Feb 2012-Glia
TL;DR: It is indicated that calcium signaling and metabotropic glutamate receptors are supportive of, but not prerequisites for, the spread of sodium between hippocampal astrocytes in situ, whereas expression of Cx30 and Cx43 is essential.
Abstract: Activation of glutamatergic synapses results in long-lasting sodium transients in astrocytes mediated mainly by sodium-dependent glutamate uptake. Sodium elevations activate Na(+) /K(+) -ATPase and glucose uptake by astrocytes, representing key signals for coupling glial metabolism to neuronal activity. Here, we analyzed the spread of sodium signals between astrocytes in hippocampal slice preparations. Stimulation of a single astrocyte resulted in an immediate sodium elevation that spread to neighboring astrocytes within a distance of ∼ 100 μm. Amplitude, slope, and propagation speed of sodium elevations in downstream cells decayed monotonically with increasing distance, indicative of a diffusion process. In contrast to sodium, calcium increases elicited by electrical stimulation were restricted to the stimulated cell and a few neighboring astrocytes. Pharmacological inhibition of mGluR1/5 slightly dampened the spread of sodium, whereas inhibition of glutamate uptake or purinergic receptors had no effect. Spread of sodium to neighboring cells was disturbed on pharmacological inhibition of gap junctions, reduced in animals at P4 and virtually omitted in Cx30/Cx43 double-deficient mice. In contrast to results obtained earlier in cultured astrocytes, our data thus indicate that calcium signaling and metabotropic glutamate receptors are supportive of, but not prerequisites for, the spread of sodium between hippocampal astrocytes in situ, whereas expression of Cx30 and Cx43 is essential. Cx30/Cx43-mediated sodium diffusion between astrocytes could represent a signal indicating increased metabolic needs, independent of concomitant calcium signaling. Spread of sodium might also serve a homeostatic function by supporting the re-establishment of steep sodium gradients and by lowering the metabolic burden imposed on single cells.

Journal ArticleDOI
01 Mar 2012-Glia
TL;DR: Evidence is provided that CXCR7 affects astrocytic cell signaling and function through pertussis toxin‐sensitive Gi/o proteins inAstrocytes, and the demonstration that SDF‐1‐bound CX CR7 activates Gi/O proteins in astroCytes could help to explain some discrepancies previously observed for the function of CxCR4 and CXcr7 in other cell types.
Abstract: SDF-1/CXCL12 binds to the chemokine receptors, CXCR4 and CXCR7, and controls cell proliferation and migration during development, tumorigenesis, and inflammatory processes. It is currently assumed that CXCR7 would represent an atypical or scavenger chemokine receptor which modulates the function of CXCR4. Contrasting this view, we demonstrated recently that CXCR7 actively mediates SDF-1 signaling in primary astrocytes. Here, we provide evidence that CXCR7 affects astrocytic cell signaling and function through pertussis toxin-sensitive G(i/o) proteins. SDF-1-dependent activation of G(i/o) proteins and subsequent increases in intracellular Ca(2+) concentration persisted in primary rodent astrocytes with depleted expression of CXCR4, but were abolished in astrocytes with depleted expression of CXCR7. Moreover, CXCR7-mediated effects of SDF-1 on Erk and Akt signaling as well as on astrocytic proliferation and migration were all sensitive to pertussis toxin. Likewise, pertussis toxin abolished SDF-1-induced activation of Erk and Akt in CXCR7-only expressing human glioma cell lines. Finally, consistent with a ligand-biased function of CXCR7 in astrocytes, the alternate CXCR7 ligand, I-TAC/CXCL11, activated Erk and Akt through β-arrestin. The demonstration that SDF-1-bound CXCR7 activates G(i/o) proteins in astrocytes could help to explain some discrepancies previously observed for the function of CXCR4 and CXCR7 in other cell types.

Journal ArticleDOI
01 Feb 2012-Glia
TL;DR: Findings indicate that neuronal activity influences both the organization of GluTs in developing astrocyte membranes and their position relative to synapses.
Abstract: Glutamate transporters (GluTs) maintain a low ambient level of glutamate in the central nervous system (CNS) and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here, we examined the subcellular distribution and dynamic remodeling of the predominant GluT GLT-1 (excitatory amino acid transporter 2, EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. Green fluorescent protein (GFP)-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse three-dimensional confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of GluTs in developing astrocyte membranes and their position relative to synapses. V

Journal ArticleDOI
01 Jan 2012-Glia
TL;DR: It is shown that the astrocytes of the rat ONH are “fortified” by extraordinarily dense cytoskeletal filaments that would make them ideal transducers of distorting mechanical forces.
Abstract: Increased intraocular pressure (IOP) damages the retinal ganglion cell axons as they pass through the optic nerve head (ONH). The massive connective tissue structure of the human lamina cribrosa is generally assumed to be the pressure transducer responsible for the damage. The rat, however, with no lamina cribrosa, suffers the same glaucomatous response to raised IOP. Here, we show that the astrocytes of the rat ONH are "fortified" by extraordinarily dense cytoskeletal filaments that would make them ideal transducers of distorting mechanical forces. The ONH astrocytes are arranged as a fan-like radial array, firmly attached ventrally to the sheath of the ONH by thick basal processes, but dividing dorsally into progressively more slender processes with only delicate attachments to the sheath. At 1 week after raising the IOP by an injection of magnetic microspheres into the anterior eye chamber, the fine dorsal processes of the ONH astrocytes are torn away from the surrounding sheath. There is no indication of distortion or compression of the axons. Subsequently, despite return of the IOP toward normal levels, the damage to the ONH progresses ventrally through the astrocytic cell bodies, resulting in complete loss of the fortified astrocytes and of the majority of the axons by around 4 weeks. We propose that the dorsal attachments of the astrocytes are the site of initial damage in glaucoma, and that the damage to the axons is not mechanical, but is a consequence oflocalized loss of metabolic support from the astrocytes (Tsacopoulos and Magistretti (1996) J Neurosci 16:877-885).

Journal ArticleDOI
01 Apr 2012-Glia
TL;DR: The results show that the response of astrocytes to TLR2 and TLR3 agonists is greatly enhanced by, and response toTLR4 agonist is completely dependent on, the presence of functional microglia, which underline the contribution of glial crosstalk in CNS responses to injury or inflammation.
Abstract: Within the central nervous system, astrocytes and microglia are the primary responders to endogenous ligands released upon injury and stress, as well as to infectious pathogens. Toll-like receptors (TLRs) are implicated in recognition of both types of stimulus. Whether astrocytes respond as strongly as microglia to TLR agonists remains contentious. In this study, we have rigorously purified astrocytes to determine their capacity for autonomous TLR response, in absence of microglia. We used flow cytometry and differential adhesion as well as a myeloid lineage-specific suicide gene to purify astrocytes from mixed glial cultures and measured their response to TLR agonists. Our results show that the response of astrocytes to TLR2 and TLR3 agonists is greatly enhanced by, and response to TLR4 agonists is completely dependent on, the presence of functional microglia. In the case of the TLR4 response to lipopolysaccharide, microglia exert their effect on astrocytes at least partially through release of soluble mediators that directly activate or facilitate astrocyte responses. Our findings underline the contribution of glial crosstalk in CNS responses to injury or inflammation. © 2012 Wiley Periodicals, Inc.

Journal ArticleDOI
01 Jul 2012-Glia
TL;DR: It is demonstrated that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid in MS and in immune cells in CNS lesions in MS tissue sections, suggesting that it may also play a role in MS.
Abstract: Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS.