scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Animal Science in 2013"


Journal ArticleDOI
TL;DR: Improve forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei, and several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible.
Abstract: The goal of this review was to analyze published data related to mitigation of enteric methane (CH 4 ) emissions from ruminant animals to document the most effective and sustainable strategies. Increas- ing forage digestibility and digestible forage intake was one of the major recommended CH 4 mitigation practices. Although responses vary, CH 4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH 4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effec- tive in reducing CH 4 emissions, but their applicabil- ity will depend on effects on feed intake, fiber digest- ibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH 4 emission intensity (Ei; CH 4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concen- trate feed will typically decrease CH 4 Ei. Nitrates show promise as CH 4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH 4 mitigating effect in ruminants fed high-grain or mixed grain-forage diets. Tannins may also reduce CH 4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH 4 -mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH 4 reduction is like- ly to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improv- ing forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH 4 Ei. Several feed supplements have a potential to reduce CH 4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible.

656 citations


Journal ArticleDOI
TL;DR: There is now sufficient information available to develop a road map on how best to direct research to ensure long-term food security for a growing human population, and the marginal benefit of collecting actual feed intake data appears to be low.
Abstract: Increasing food production for the growing human population off a constraining land base will require greater efficiency of production. Genetic improvement of feed efficiency in cattle, which is cumulative and permanent, is one likely vehicle to achieving efficiency gains. The objective of this review is to summarize genetic parameters for feed efficiency traits in dairy and beef cattle and also to address some of the misconceptions associated with feed efficiency in these sectors, as well as discuss the potential use of feed efficiency in breeding programs. A meta-analysis of up to 39 scientific publications in growing cattle clearly showed that genetic variation in feed efficiency exists with a pooled heritability for residual feed intake (RFI) and feed conversion efficiency of 0.33 ± 0.01 (range of 0.07 to 0.62) and 0.23 ± 0.01 (range of 0.06 to 0.46), respectively. Heritability estimates for feed efficiency in cows were lower; a meta-analysis of up to 11 estimates revealed heritability estimates for gross feed efficiency and RFI of 0.06 ± 0.010 and 0.04 ± 0.008, respectively. Meta-analysis of genetic correlations between feed intake, feed efficiency and other performance traits are presented, and selection index theory is used to calculate the proportion of genetic variation in feed intake that can be explained by easy to measure, and often already collected, data. A large proportion of the genetic variation in feed intake could be explained in both growing animals and lactating animals using up to 5 predictor traits, including BW, growth rate, milk yield, body composition, and linear type traits reflecting body size and muscularity. Knowledge of genetic merit for feed intake can be used, along with estimates of genetic merit for energy sinks, to calculate genetic merit for feed efficiency. Therefore, the marginal benefit of collecting actual feed intake data, using the genetic parameters used in this study, appears to be low. There is now sufficient information available to develop a road map on how best to direct research to ensure long-term food security for a growing human population. Gaps in knowledge are identified here, and possibilities to address these gaps are discussed.

290 citations


Journal ArticleDOI
TL;DR: Early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory cytokines, but anti- inflammatory cytokines were not affected in the intestine of piglets.
Abstract: Although weaning stress has been reported to impair intestinal barrier function, the mechanisms have not yet been elucidated. In the present study, the intestinal morphology and permeability and mRNA expressions of tight junction proteins and cytokines in the intestine of piglets during the 2 wk after weaning were assessed. The phosphorylated (activated) ratios of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular regulated kinases (ERK1/2) were determined to investigate whether mitogen-activated protein kinase (MAPK) signaling pathways are involved in the early weaning process. A shorter villus and deeper crypt were observed on d 3 and 7 postweaning. Although damaged intestinal morphology recovered to preweaning values on d 14 postweaning, the intestinal mucosal barrier, which was reflected by transepithelial electrical resistance (TER) and paracellular flux of dextran (4 kDa) in the Ussing chamber and tight junction protein expression, was not recovered. Compared with the preweaning stage (d 0), jejunal TER and mRNA expressions of occludin and claudin-1 on d 3, 7, and 14 postweaning and Zonula occludens-1 (ZO-1) mRNA on d 3 and 7 postweaning were reduced, and paracellular flux of dextran on d 3, 7, and 14 postweaning was increased. An increase (P < 0.05) of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA on d 3 and d 7 postweaning and an increase (P < 0.05) of interferon-γ (IFN-γ) mRNA on d 3 postweaning were observed compared with d 0. No significant increase of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) mRNA after weaning was observed. The phosphorylated (activated) ratios of JNK and p38 on d 3 and 7 postweaning and the phosphorylated ratio of ERK1/2 on d 3 postweaning were increased (P < 0.05) compared with d 0. The results indicated that early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory cytokines, but anti-inflammatory cytokines were not affected in the intestine of piglets. The recovery of the intestinal barrier function was slower than that of the intestinal mucosal morphology. The weaning stress activated MAPK signaling pathways in the intestine, which may be an important mechanism of weaning-associated enteric disorders of piglets.

262 citations


Journal ArticleDOI
TL;DR: Analysis of published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations found that pursuing a suite of intensive and extensive reproductive management technologies provides a significant opportunity to reduce GHG emissions.
Abstract: The goal of this review was to analyze published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Increasing animal productivity can be a very effective strategy for reducing greenhouse gas (GHG) emissions per unit of livestock product. Improving the genetic potential of animals through planned cross-breeding or selection within breeds and achieving this genetic potential through proper nutrition and improvements in reproductive efficiency, animal health, and reproductive lifespan are effective approaches for improving animal productivity and reducing GHG emission intensity. In subsistence production systems, reduction of herd size would increase feed availability and productivity of individual animals and the total herd, thus lowering CH4 emission intensity. In these systems, improving the nutritive value of low-quality feeds for ruminant diets can have a considerable benefit on herd productivity while keeping the herd CH4 output constant or even decreasing it. Residual feed intake may be a tool for screening animals that are low CH4 emitters, but there is currently insufficient evidence that low residual feed intake animals have a lower CH4 yield per unit of feed intake or animal product. Reducing age at slaughter of finished cattle and the number of days that animals are on feed in the feedlot can significantly reduce GHG emissions in beef and other meat animal production systems. Improved animal health and reduced mortality and morbidity are expected to increase herd productivity and reduce GHG emission intensity in all livestock production systems. Pursuing a suite of intensive and extensive reproductive management technologies provides a significant opportunity to reduce GHG emissions. Recommended approaches will differ by region and species but should target increasing conception rates in dairy, beef, and buffalo, increasing fecundity in swine and small ruminants, and reducing embryo wastage in all species. Interactions among individual components of livestock production systems are complex but must be considered when recommending GHG mitigation practices.

250 citations


Journal ArticleDOI
TL;DR: Despite similar nutrient intake, HS pigs gained more BW and had distinctly different postabsorptive bioenergetic variables compared with PFTN controls, and these heat-induced metabolic changes may in part explain the altered carcass phenotype observed in heat-stressed pigs.
Abstract: Heat stress (HS) jeopardizes pig health, reduces performance variables, and results in a fatter carcass. Whether HS directly or indirectly (via reduced feed intake) is responsible for the suboptimal production is not known. Crossbred gilts (n = 48; 35 ± 4 kg BW) were housed in constantly climate-controlled rooms in individual pens and exposed to 1) thermal-neutral (TN) conditions (20°C; 35% to 50% humidity) with ad libitum intake (n = 18), 2) HS conditions (35°C; 20% to 35% humidity) with ad libitum intake (n = 24), or 3) pair-fed [PF in TN conditions (PFTN), n = 6, to eliminate confounding effects of dissimilar feed intake (FI)]. Pigs in the TN and HS conditions were sacrificed at 1, 3, or 7 d of environmental exposure, whereas the PFTN pigs were sacrificed after 7 d of experimental conditions. Individual rectal temperature (Tr), skin temperature (Ts), respiration rates (RR), and FI were determined daily. Pigs exposed to HS had an increase (P < 0.01) in Tr (39.3°C vs. 40.8°C) and a doubling in RR (54 vs. 107 breaths per minute). Heat-stressed pigs had an immediate (d 1) decrease (47%; P < 0.05) in FI, and this magnitude of reduction continued through d 7; by design the nutrient intake pattern for the PFTN controls mirrored the HS group. By d 7, the TN and HS pigs gained 7.76 and 1.65 kg BW, respectively, whereas the PFTN pigs lost 2.47 kg BW. Plasma insulin was increased (49%; P < 0.05) in d 7 HS pigs compared with PFTN controls. Compared with TN and HS pigs, on d 7 PFTN pigs had increased plasma NEFA concentrations (110%; P < 0.05). Compared with TN and PFTN controls, on d 7 circulating N(τ)-methylhistidine concentrations were increased (31%; P < 0.05) in HS pigs. In summary, despite similar nutrient intake, HS pigs gained more BW and had distinctly different postabsorptive bioenergetic variables compared with PFTN controls. Consequently, these heat-induced metabolic changes may in part explain the altered carcass phenotype observed in heat-stressed pigs.

240 citations


Journal ArticleDOI
Abstract: This review analyzes published data on manure management practices used to mitigate methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Reducing excreted nitrogen (N) and degradable organic carbon (C) by diet manipulation to improve the balance of nutrient inputs with production is an effective practice to reduce CH4 and N2O emissions. Most CH4 is produced during manure storage; therefore, reducing storage time, lowering manure temperature by storing it outside during colder seasons, and capturing and combusting the CH4 produced during storage are effective practices to reduce CH4 emission. Anaerobic digestion with combustion of the gas produced is effective in reducing CH4 emission and organic C content of manure; this increases readily available C and N for microbial processes creating little CH4 and increased N2O emissions following land application. Nitrous oxide emission occurs following land application as a byproduct of nitrification and dentrification processes in the soil, but these processes may also occur in compost, biofilter materials, and permeable storage covers. These microbial processes depend on temperature, moisture content, availability of easily degradable organic C, and oxidation status of the environment, which make N2O emissions and mitigation results highly variable. Managing the fate of ammoniacal N is essential to the success of N2O and CH4 mitigation because ammonia is an important component in the cycling of N through manure, soil, crops, and animal feeds. Manure application techniques such as subsurface injection reduce ammonia and CH4 emissions but can result in increased N2O emissions. Injection works well when combined with anaerobic digestion and solids separation by improving infiltration. Additives such as urease and nitrification inhibitors that inhibit microbial processes have mixed results but are generally effective in controlling N2O emission from intensive grazing systems. Matching plant nutrient requirements with manure fertilization, managing grazing intensity, and using cover crops are effective practices to increase plant N uptake and reduce N2O emissions. Due to system interactions, mitigation practices that reduce emissions in one stage of the manure management process may increase emissions elsewhere, so mitigation practices must be evaluated at the whole farm level.

215 citations


Journal ArticleDOI
TL;DR: The preterm pig model is presented as a translational model in pediatric gastroenterology that has provided new insights into important pediatric diseases such as NEC and SBS and may also provide a sensitive model for postnatal adaptation of weak term piglets showing high mortality.
Abstract: At birth, the newborn mammal undergoes a transition from a sterile uterine environment with a constant nutrient supply, to a microbe-rich environment with intermittent oral intake of complex milk nutrients via the gastrointestinal tract (GIT). These functional challenges partly explain the relatively high morbidity and mortality of neonates. Preterm birth interrupts prenatal organ maturation, including that of the GIT, and increases disease risk. Exemplary is necrotizing enterocolitis (NEC), which is associated closely with GIT immaturity, enteral feeding, and bacterial colonization. Infants with NEC may require resection of the necrotic parts of the intestine, leading to short bowel syndrome (SBS), characterized by reduced digestive capacity, fluid loss, and dependency on parenteral nutrition. This review presents the preterm pig as a translational model in pediatric gastroenterology that has provided new insights into important pediatric diseases such as NEC and SBS. We describe protocols for delivery, care, and handling of preterm pigs, and show how the immature GIT responds to delivery method and different nutritional and therapeutic interventions. The preterm pig may also provide a sensitive model for postnatal adaptation of weak term piglets showing high mortality. Attributes of the preterm pig model include close similarities with preterm infants in body size, organ development, and many clinical features, thereby providing a translational advantage relative to rodent models of GIT immaturity. On the other hand, the need for a sow surgical facility, a piglet intensive care unit, and clinically trained personnel may limit widespread use of preterm pigs. Studies on organ adaptation in preterm pigs help to identify the physiological basis of neonatal survival for hypersensitive newborns and aid in defining the optimal diet and rearing conditions during the critical neonatal period.

205 citations


Journal ArticleDOI
TL;DR: Results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability, which might contribute to reduced pig performance during warm summer months.
Abstract: Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (P<0.05) in HS compared with TN pigs, while jejunum TER decreased 30% (P<0.05) and LPS APP increased 2-fold (P<0.01). Furthermore, d 7 HS pigs tended (P=0.06) to have increased LPS APP (41%) compared with PFTN controls. Lysozyme and alkaline phosphatase activity decreased (46 and 59%, respectively; P<0.05) over time in HS pigs, while the immune cell marker, myeloperoxidase activity, was increased (P<0.05) in the jejunum at d 3 and 7. These results indicate that both HS and reduced feed intake decrease intestinal integrity and increase endotoxin permeability. We hypothesize that these events may lead to increased inflammation, which might contribute to reduced pig performance during warm summer months.

180 citations


Journal ArticleDOI
TL;DR: Changing mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.
Abstract: Beef cattle are raised for their lean tissue, and excessive fat accumulation accounts for large amounts of waste. On the other hand, intramuscular fat or marbling is essential for the palatability of beef. In addition, tender beef is demanded by consumers, and connective tissue contributes to the background toughness of beef. Recent studies show that myocytes, adipocytes, and fibroblasts are all derived from a common pool of progenitor cells during embryonic development. It appears that during early embryogenesis, multipotent mesenchymal stem cells first diverge into either myogenic or adipogenic-fibrogenic lineages; myogenic progenitor cells further develop into muscle fibers and satellite cells whereas adipogenic-fibrogenic lineage cells develop into the stromal-vascular fraction of skeletal muscle where reside adipocytes, fibroblasts, and resident fibro-adipogenic progenitor cells (the counterpart of satellite cells). Strengthening myogenesis (i.e., formation of muscle cells) enhances lean growth, promoting intramuscular adipogenesis (i.e., formation of fat cells) increases marbling, and reducing intramuscular fibrogenesis (i.e., formation of fibroblasts and synthesis of connective tissue) improves overall tenderness of beef. Because the abundance of progenitor cells declines as animals age, it is more effective to manipulate progenitor cell differentiation at an early developmental stage. Nutritional, environmental, and genetic factors shape progenitor cell differentiation; however, up to now, our knowledge regarding mechanisms governing progenitor cell differentiation remains rudimentary. In summary, altering mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.

168 citations


Journal ArticleDOI
TL;DR: The data demonstrate that nutrient intake from milk or milk replacer during the preweaning period positively impacted long-term productivity of dairy calves and provides new management opportunities to improve milk yield of dairy cattle.
Abstract: Data from calf studies conducted over the past 20 yr has shown that preweaning nutrient intake, from milk or milk replacer, can have profound effects on development of the calf that enhance first lactation and lifetime productivity. Many of the studies show positive but not significant effects of preweaning nutrition on long-term productivity, primarily due to a lack of power, usually due to inadequate animal numbers per treatment. Meta-analyses were conducted using Comprehensive Meta-Analysis (CMA) software (version 2.2.064; Biostat, Englewood, NJ; Borenstein et al., 2005) to evaluate the effects of preweaning nutrient intake and preweaning ADG on first lactation milk production from studies where milk yield and preweaning treatment data were adequately described. Currently, 12 studies have been reported, describing milk yield of calves that had been fed various levels of preweaning nutrients, from both milk and milk replacer, and 11 evaluated the effect of preweaning ADG on long-term productivity. The estimated effect size for treatment (level of milk or milk replacer intake) and ADG were calculated. Using a random effects model, the overall milk yield response based on treatment was 435 ± 117 kg/lactation (P < 0.001), demonstrating that among the data sets milk yield in the first lactation was increased by increasing nutrient intake from milk or milk replacer in preweaned calves. Meta-regression of the effect of ADG resulted in the following equation: milk yield = -106 kg + 1,551.4 kg × ADG (kg/d; P = 0.01) indicating that for every kilogram of preweaning ADG, first lactation milk yield increased by 1,550 kg. Furthermore, the meta-analysis yielded an odds ratio of 2.09 (P = 0.001) indicating that calves fed for greater preweaning ADG were 2 times more likely to have greater milk yield in the first lactation. Finally, the 2001 Dairy NRC calf model was used to estimate the difference, within study, of intake over maintenance from milk replacer, using either the actual data or the published ADG; the difference in intake over maintenance was used as a predictor in a meta-regression and resulted in the following equation: milk yield = -60 kg + 1,100 kg × estimated difference in intake over maintenance (P = 0.02). The data demonstrate that nutrient intake from milk or milk replacer during the preweaning period positively impacted long-term productivity of dairy calves and provides new management opportunities to improve milk yield of dairy cattle. These data appear to indicate that there are significant developmental functions being programmed in the neonatal calf that require further investigation.

161 citations


Journal ArticleDOI
TL;DR: Angus-cross steers were used in a 3-yr study to assess effects of forage species grazed before slaughter versus concentrate finishing on carcass and meat quality, which reduces carcass weight and fat deposition but maintains high concentrations of n-3 and CLA fatty acids.
Abstract: Angus-cross steers (n = 128; initial BW = 270 ± 3.8 kg) were used in a 3-yr study to assess effects of forage species grazed before slaughter versus concentrate fi nishing on carcass and meat quality. At the completion of the stockering phase, steers were randomly allotted to mixed pasture (MP; n = 36/yr) or corn-silage concentrate (CON; n = 12/yr) fi nishing treatments. At 40 d before harvest, MP steers were randomly divided into 3 forage species treatments: alfalfa (AL), pearl millet (PM), or mixed pasture (MP). Average daily BW gain was great- er (P = 0.001) for CON than for forage-fi nished (FOR) steers during the early and overall fi nishing phase. During the late fi nishing phase when FOR steers were grazing difference forage species, ADG was greater (P = 0.03) for PM than MP or AL. Harvest weight and HCW were greater (P 0.78) between CON and FOR and were not altered (P > 0.40) by forage species. Trained sensory panel juici- ness, initial tenderness, and overall tenderness scores did not differ (P > 0.17) by fitreatment or forage species. Beef fl avor intensity was greater (P 0.05) total lipid content of the LM. Oleic acid concentration and total MUFA of the LM were 21% and 22% less (P = 0.001) for FOR than CON. Concentrations of all individual (lino- lenic acid, eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosadexaenoic (DHA) acids) and total n-3 fatty acids were greater (P < 0.001) for FOR than CON. Finishing on AL increased (P = 0.017) the concentration of linolenic acid compared with MP or PM. The ratio of n-6 to n-3 fatty acids was greater (P = 0.001) for CON than FOR and did not differ (P = 0.88) by forage species. Concentrate fi nishing increases carcass weight with same time endpoints and accelerates deposition of MUFA in comparison with FOR, which reduces carcass weight and fat deposition but maintains high concentrations of n-3 and CLA fatty acids. Finishing system or forage species grazed 40 d before slaughter did not alter beef tenderness but FOR had greater off-fl avors according to both trained and descriptive sensory panelists.

Journal ArticleDOI
TL;DR: In this article, the authors assess the accuracy of genomic predictions for 19 traits including feed efficiency, growth, and carcass and meat quality traits in beef cattle, using two methods of genomic prediction (BayesR and genomic BLUP) either using a common training dataset for all breeds or using a training dataset comprising only animals of the same breed.
Abstract: The aim of this study was to assess the accuracy of genomic predictions for 19 traits including feed efficiency, growth, and carcass and meat quality traits in beef cattle. The 10,181 cattle in our study had real or imputed genotypes for 729,068 SNP although not all cattle were measured for all traits. Animals included Bos taurus, Brahman, composite, and crossbred animals. Genomic EBV (GEBV) were calculated using 2 methods of genomic prediction (BayesR and genomic BLUP (GBLUP)) either using a common training dataset for all breeds or using a training dataset comprising only animals of the same breed. Accuracies of GEBV were assessed using 5-fold cross-validation. The accuracy of genomic prediction varied by trait and by method. Traits with a large number of recorded and genotyped animals and with high heritability gave the greatest accuracy of GEBV. Using GBLUP, the average accuracy was 0.27 across traits and breeds, but the accuracies between breeds and between traits varied widely. When the training population was restricted to animals from the same breed as the validation population, GBLUP accuracies declined by an average of 0.04. The greatest decline in accuracy was found for the 4 composite breeds. The BayesR accuracies were greater by an average of 0.03 than GBLUP accuracies, particularly for traits with known genes of moderate to large effect mutations segregating. The accuracies of 0.43 to 0.48 for IGF-I traits were among the greatest in the study. Although accuracies are low compared with those observed in dairy cattle, genomic selection would still be beneficial for traits that are hard to improve by conventional selection, such as tenderness and residual feed intake. BayesR identified many of the same quantitative trait loci as a genomewide association study but appeared to map them more precisely. All traits appear to be highly polygenic with thousands of SNP independently associated with each trait.

Journal ArticleDOI
C. Fitzsimons1, David A. Kenny1, M. H. Deighton, Alan G. Fahey, Mark McGee1 
TL;DR: Investigation of residual feed intake and performance with methane emissions, rumen fermentation, and digestion in beef heifers suggests that improved RFI will reduce methane emissions without affecting productivity of growing beef cattle.
Abstract: This study examined the relationship of residual feed intake (RFI) and performance with methane emissions, rumen fermentation, and digestion in beef heifers. Individual DMI and growth performance were measured for 22 Simmental heifers (mean initial BW 449 kg, SD = 46.2 kg) offered grass silage ad libitum for 120 d. Ultrasonically scanned muscle and fat depth, BCS, muscularity score, skeletal measurements, blood variables, rumen fermentation (via stomach tube), and total tract digestibility (indigestible marker) were measured. Methane production was estimated using the sulfur hexafluoride tracer gas technique over two 5-d periods beginning on d 20 and 75 of the RFI measurement period. Phenotypic RFI was calculated as actual DMI minus expected DMI. The residuals of the regression of DMI on ADG and midtest metabolic body weight, using all heifers, were used to compute individual RFI coefficients. Heifers were ranked by RFI and assigned to low (efficient), medium, or high (inefficient) groupings. Overall ADG and DMI were 0.58 kg (SD = 0.18) and 7.40 kg (SD = 0.72), respectively. High-RFI heifers consumed 9 and 15% more (P 0.05) between low- and high-RFI groups. High-RFI heifers had higher concentrations of plasma glucose (6%) and urea (13%) and lower concentrations of plasma creatinine (9%) than low-RFI heifers (P 0.05) between RFI groups, although acetate:propionate ratio was lowest (P = 0.07) for low-RFI (3.5) and highest for high-RFI (4.6) heifers. Methane production expressed as grams per day or grams per kilogram metabolic body weight was greater (P < 0.05) for high (297 g/d and 2.9 g/kg BW0.75) compared with low (260 g/d and 2.5 g/kg BW0.75) RFI heifers, with medium (275 g/d and 2.7 g/kg BW0.75) RFI heifers being intermediate. Regression analysis indicated that a 1 kg DM/d increase in RFI was associated with a 23 g/d increase (P = 0.09) in methane emissions. Results suggest that improved RFI will reduce methane emissions without affecting productivity of growing beef cattle.

Journal ArticleDOI
TL;DR: Understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants.
Abstract: Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.

Journal ArticleDOI
TL;DR: Piglet survival can be improved by a range of management procedures, many of which occur in the perinatal period and require the supervision of farrowing by trained staff, and there is some evidence that this can be economically offset by improved piglet survival.
Abstract: Preweaning mortality varies greatly among herds and this is partly attributed to differences in farrowing house management. In this review, we describe the various management strategies than can be adopted to decrease mortality and critically examine the evidence that exists to support their use. First, we consider which management procedures are effective against specific causes of death: intrapartum stillbirth, hypothermia, starvation, disease, crushing, and savaging. The most effective techniques include intervention to assist dystocic sows, measures to prevent and treat sow hypogalactia, good farrowing house hygiene, providing newborn piglets with a warm microenvironment, early fostering of supernumerary piglets, methods that assist small and weak piglets to breathe and obtain colostrum, and intervention to prevent deaths from crushing and savaging. The provision of nest-building material and modifications to the pen to assist the sow when lying down may also be beneficial, but the evidence is less clear. Because most deaths occur around the time of farrowing and during the first few days of life, the periparturient period is a particularly important time for management interventions intended to reduce piglet mortality. A number of procedures require a stockperson to be present during and immediately after farrowing. Second, we consider the benefits of farrowing supervision for preweaning mortality in general, focusing particularly on methods for the treatment of dystocia and programs of piglet care that combine multiple procedures. Third, we discuss the need for good stockmanship if farrowing supervision is to be effective. Stockmanship refers not only to technical skills but also to the manner in which sows are handled because this influences their fearfulness of humans. We conclude that piglet survival can be improved by a range of management procedures, many of which occur in the perinatal period and require the supervision of farrowing by trained staff. Although this incurs additional labor costs, there is some evidence that this can be economically offset by improved piglet survival.

Journal ArticleDOI
Yan-hua Gao1, Fei Han1, Xiaohan Huang1, Rong Yili1, H Yi1, Y. Wang1 
TL;DR: The findings provide valuable evidence to explain the differences in the intestinal physiology between Jinhua and Landrace pigs; that is, Jinhua pigs appeared to show better growth performance, a lower incidence of diarrhea, and a lower extent of immune activation in response to ETEC K88 challenge and a higher Lactobacillus population, a higher percentage of LactOBacillus, and higher levels of tight junction proteins with and without challenge.
Abstract: This study hypothesized that the gut microbial populations, intestinal morphology, and cytokine production are differentially altered in 2 different pig breeds, namely, Chinese native Jinhua pigs and European Landrace pigs, after orally challenge with enterotoxigenic Escherichia coli (ETEC) K88. A total of 12 Jinhua pigs and 12 Landrace pigs were allocated to either the nonchallenged or the challenged groups (6 pigs per group). The challenged pigs were orally administered ETEC K88, and their nonchallenged counterparts were given sterile Luria-Bertani broth. Selected gut microbial populations, intestinal morphology, mRNA expression of tight junction proteins, and the levels of ileal cytokines and secretory immunoglobulin A (sIgA) production were measured in Jinhua and Landrace pigs. The results showed that the challenged Jinhua pigs exhibited a significantly (P < 0.05) lower incidence of diarrhea compared with their Landrace counterparts. The Escherichia coli (E.coli) population and the percentage of E. coli in the total bacteria population were increased in response to ETEC K88 challenge in both Jinhua and Landrace pigs. The challenged Landrace pigs shed more E. coli (P < 0.05) and had higher percentage of E. coli in the total bacteria population in the colon (P < 0.05) compared with their Jinhua counterparts. Both pig breeds tended to exhibit greater villous atrophy and crypt depth reduction in all of the intestinal segments with challenge. The expression of tight junction proteins decreased in response to ETEC K88 challenge in both pig breeds. The levels of the proinflammatory cytokines interferon (IFN)-γ, tumor necrosis factor-α, and IL-6 and the secretion of sIgA were positively altered whereas the levels of the anti-inflammatory cytokine IL-4 and transforming growth factor (TGF)-β were negatively altered by ETEC K88 challenge in both breeds. Jinhua pigs exhibited significantly higher levels of IFN-γ and TGF-β (P < 0.05) in the challenged group. Our findings provide valuable evidence to explain the differences in the intestinal physiology between Jinhua and Landrace pigs; that is, Jinhua pigs appeared to show better growth performance, a lower incidence of diarrhea, and a lower extent of immune activation in response to ETEC K88 challenge and a higher Lactobacillus population, a higher percentage of Lactobacillus in the total bacteria population, a higher ratio of Lactobacillus to E. coli, and higher levels of tight junction proteins with and without challenge.

Journal ArticleDOI
TL;DR: The results of this study emphasize that individual characteristics of neonatal piglets could serve as indicators of survivability of piglets born in noncrate systems; however, the results suggest that the importance of characteristics differed in different periods of the preweaning period.
Abstract: The aim of this study was to investigate the effects of individual physical characteristics on preweaning survival and growth of piglets born in a noncrate system. Data were collected from 3,402 neonatal piglets from 203 Landrace × Yorkshire sows housed in noncrate pens in a commercial Danish sow herd. Piglets were categorized into groups according to their survivability: surviving to weaning (SURV), stillborn (STILL), or dead between birth and weaning (DBW), which was subdivided into dead d 0 to 1 after farrowing (DEAD1) or dead d 2 to 26 after farrowing (DEAD26). Linear models were used to determine which physical characteristics affected survivability and growth of piglets. Results showed that characteristics related to the individual piglets had a greater degree of explanatory power in relation to survival than variables related to the sow. Survival of piglets increased if piglets were females (P < 0.001), had a greater body mass index (P < 0.001), and were born to sows of parity 3 or more (P = 0.017). Piglets with a greater birth weight were more likely to survive (P < 0.001), but birth weight was inferior to body mass index in explaining differences between SURV and DBW. Piglets that died 2 to 26 d after birth had a lower birth weight (P < 0.001), were born to sows of parity 1 or 2 (P = 0.014), and were born after a shorter gestation (P = 0.011) compared with SURV. Piglets that died on d 0 to 1 after birth had a lower body mass index (P < 0.001), displayed a greater degree of growth restriction (P = 0.004), and were born in large litters (P = 0.005). The gender of the piglets affected survivability at both d 0 to 1 (P < 0.001) and d 2 to 26 (P < 0.001). Piglets in DEAD1 differed from STILL by having a shorter crown to rump length (P < 0.001), a birth weight that deviated more from the mean weight of the litter (P = 0.001), and being more likely to be born before d 116 of gestation (P = 0.008). The only physical characteristic that was important for growth performance in the suckling period was birth weight (P < 0.001), yet using only birth weight as an indicator for survivability was too simplistic. The results of this study emphasize that individual characteristics of neonatal piglets could serve as indicators of survivability of piglets born in noncrate systems; however, the results suggest that the importance of characteristics differed in different periods of the preweaning period.

Journal ArticleDOI
TL;DR: GnRH-induced ovulation of small dominant follicles was associated with reduced serum estradiol, fertilization rate (donor cows), and pregnancy establishment (recipients, respectively), and ECP supplementation during the preovulatory period increased pregnancy rates in cows induced to ovulate smaller dominant follicle.
Abstract: In postpartum beef cows, GnRH-induced ovulation of small dominant follicles decreased pregnancy rates and increased late embryonic/fetal mortality. In Exp. 1, single ovulation reciprocal embryo transfer (ET) was used to examine the relationship between preovulatory serum concentrations of estradiol at GnRH-induced ovulation in donor and recipient cows and establishment and maintenance of pregnancy. Suckled beef cows (n = 1,164) were administered GnRH (GnRH1, 100 μg) on d -9 (GnRH1), PGF(2α) on d -2, and GnRH2 (GnRH2, 100 μg) on d 0 (CO-Synch protocol) either with (donors; n = 810) or without (recipients; n = 354) AI. Single embryos (n = 394) or oocytes (n = 45) were recovered from the donor cows (d 7; ET) and all live embryos were transferred into recipients. Serum concentration of estradiol at GnRH2 was positively correlated with follicle size at GnRH2 (r = 0.45, P < 0.01) and progesterone at ET (r =0.34, P < 0.01). Donor cows with greater estradiol at GnRH2 were more likely to yield an embryo than an unfertilized oocyte (P < 0.01). Donor and recipient cows were retrospectively divided into 4 groups [low estradiol (<8.4 pg/mL) or high estradiol (≥8.4 pg/mL)] based on serum concentration of estradiol at GnRH2. Pregnancy rate at d 27 for low-low (n = 78), low-high (n = 80), high-low (n = 91), and high-high (n = 101) groups (donor-recipient, respectively) was 45, 65, 43, and 61% respectively (P < 0.02). Because recipient cows with greater estradiol concentration at GnRH2 had greater pregnancy rates in Exp. 1, the objective of Exp. 2 was to evaluate the effect of estradiol supplementation on pregnancy rate. Ovulation was synchronized in suckled beef cows (n = 600) using the CO-Synch protocol with the insertion of a controlled internal drug release (CIDR; intravaginal progesterone supplement) from d -9 until d -2. Approximately one-half of the cows (n = 297) received an injection of estradiol cypionate (ECP; 0.5 mg intramuscularly) 24 h before AI. Compared with the no treatment (Control) cows, ECP treatment increased (P < 0.01) pregnancy rates of cows induced to ovulate smaller dominant follicles (<12.2 mm). In conclusion, GnRH-induced ovulation of small dominant follicles was associated with reduced serum estradiol, fertilization rate (donor cows), and pregnancy establishment (recipient cows). Furthermore, ECP supplementation during the preovulatory period increased pregnancy rates in cows induced to ovulate smaller dominant follicles.

Journal ArticleDOI
TL;DR: In conclusion, the 3 plant extracts tested reduced diarrhea and inflammation caused by E. coli infection, which may be beneficial to pig health.
Abstract: A study was conducted to evaluate the effects of 3 different plant extracts on diarrhea, immune response, intestinal morphology, and growth performance of weaned pigs experimentally infected with a pathogenic F-18 Escherichia coli (E. coli). Sixty-four weaned pigs (6.3±0.2 kg BW, and 21 d old) were housed in individual pens in disease containment chambers for 15 d: 4 d before and 11 d after the first inoculation (d 0). Treatments were in a 2×4 factorial arrangement: with or without an F-18 E. coli challenge (toxins: heat-labile toxin, heat-stable toxin b, and Shiga-like toxin 2; 10(10) cfu/3 mL oral dose; daily for 3 d from d 0) and 4 diets [a nursery basal diet (CON) or 10 ppm of capsicum oleoresin, garlic botanical, or turmeric oleoresin]. The growth performance was measured on d 0 to 5, 5 to 11, and 0 to 11. Diarrhea score (1, normal, to 5, watery diarrhea) was recorded for each pig daily. Frequency of diarrhea was the percentage of pig days with a diarrhea score of 3 or greater. Blood was collected on d 0, 5, and 11 to measure total and differential white blood cell counts and serum tumor necrosis factor (TNF)-α, IL-10, transforming growth factor (TGF)-β, C-reactive protein, and haptoglobin. On d 5 and 11, half of the pigs were euthanized to measure villi height and crypt depth of the small intestine and macrophage and neutrophil number in the ileum. The E. coli infection increased (P<0.05) diarrhea score, frequency of diarrhea, white blood cell counts, serum TNF-α and haptoglobin, and ileal macrophages and neutrophils but reduced (P<0.05) villi height and the ratio of villi height to crypt depth of the small intestine on d 5. In the challenged group, feeding plant extracts reduced (P<0.05) average diarrhea score from d 0 to 2 and d 6 to 11 and frequency of diarrhea and decreased (P<0.05) TNF-α and haptoglobin on d 5, white blood cell counts and neutrophils on d 11, and ileal macrophages and neutrophils on d 5. Feeding plant extracts increased (P<0.05) ileal villi height on d 5 but did not affect growth performance compared with the CON. In the sham group, feeding plant extract also reduced (P<0.05) diarrhea score, frequency of diarrhea, and ileal macrophages compared with the CON. In conclusion, the 3 plant extracts tested reduced diarrhea and inflammation caused by E. coli infection, which may be beneficial to pig health.

Journal ArticleDOI
TL;DR: The biology of tall fescue and perennial ryegrass and the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate are described and management strategies focused predominantly on the success of endophyte-infected perennial rrass in New Zealand and Australia are discussed.
Abstract: Tall fescue (Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) are impor- tant perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichloe/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock indus- tries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated uti- lization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate.

Journal ArticleDOI
TL;DR: Heifers that calved early in the calving season with their first calf had increased longevity and kilograms weaned, compared with heifer that calve later in theCalving season, and Estimated postpartum interval to conception as a 2-yr-old cow was greater for females that calving in the first period as heifers but did not differ between heifer calving periods in subsequent calving seasons.
Abstract: Longevity and lifetime productivity are important factors influencing profitability for the cow-calf producer. Heifers that conceive earlier in the breeding season will calve earlier in the calving season and have a longer interval to rebreeding. Calves born earlier in the calving season will also be older and heavier at weaning. Longevity data were collected on 2,195 heifers from producers in South Dakota Integrated Resource Management groups. Longevity and weaning weight data were collected on 16,549 individual heifers at the U.S. Meat Animal Research Center (USMARC). Data were limited to heifers that conceived during their first breeding season. Heifers were grouped into 21-d calving periods. Heifers were determined to have left the herd when they were diagnosed not pregnant at the end of the breeding season. Heifers that left the herd for reasons other than reproductive failure were censored from the data. Heifers that calved with their first calf during the first 21-d period of the calving season had increased (P < 0.01) longevity compared with heifers that calved in the second 21-d period, or later. Average longevity for South Dakota heifers that calved in the first or later period was 5.1 ± 0.1 and 3.9 ± 0.1 yr, respectively. Average longevity for USMARC heifers that calved in the first, second, or third period was 8.2 ± 0.3, 7.6 ± 0.5, and 7.2 ± 0.1 yr, respectively. Calving period as a heifer influenced (P < 0.01) unadjusted weaning BW of the first 6 calves. Estimated postpartum interval to conception as a 2-yr-old cow was greater for females that calved in the first period as heifers but did not differ between heifer calving periods in subsequent calving seasons. In summary, heifers that calved early in the calving season with their first calf had increased longevity and kilograms weaned, compared with heifers that calved later in the calving season.

Journal ArticleDOI
TL;DR: It was demonstrated that the head shape of newborn piglets is a good selection criteria for identifying piglets that need oral supplementation during the neonatal stage and their intermediary metabolism was altered due to different colostrum intakes.
Abstract: The increasing litter sizes of modern pig breeds have led to a significant number of piglets that are born undersized ("small" piglets) and some have been exposed to different degrees of intrauterine growth restriction (IUGR). The aim of this study was to investigate the physiology and capability to ingest colostrum of these small piglets, suffering from various degrees of IUGR, to see if their IUGR score could be a useful tool for easy identification of piglets in need of intervention in the colostrum period. Piglets were classified at birth based on head morphology. Piglets were classified either "normal," "mildly IUGR" (m-IUGR), or "severe IUGR" (s-IUGR), based on head morphology. Blood samples were collected at birth and at 24 h, and colostrum intake during two 12-h periods and blood metabolites at 0 and 24 h were measured. At 24 h, piglets weighing <900 g at birth and the median piglet in birth order were sacrificed, and organ weights and hepatic glycogen were measured. Overall, there was an influence of the piglets' classification on most characteristics, with normal piglets having a greater colostrum intake between 0 and 12 h (P < 0.001) and between 12 and 24 h (P < 0.05), and higher birth weight, crown rump length, body mass index, and ponderal index (P < 0.001), and a tendency toward a higher vitality score (P < 0.069) than s-IUGR piglets. There was a time × IUGR interaction, with plasma glucose levels being lowered (P < 0.001) and lactate levels elevated (P < 0.001) in s-IUGR piglets at 24 h compared with normal and m-IUGR piglets. Some differences were found in electrolytes; sodium plasma concentrations were greatest for normal piglets (P < 0.05) and highest at 0 h (P < 0.05). At 24 h of age, s-IUGR piglets had a higher heart (P < 0.001) and brain percentage (P < 0.001), and a lower liver percentage (P < 0.001) relative to body weight, compared with normal piglets. In addition, s-IUGR piglets had less hepatic glycogen than m-IUGR piglets and normal piglets. The present study showed that the physiology of piglets in the colostrum period was affected by IUGR status at birth and their intermediary metabolism was altered due to different colostrum intakes. Furthermore, it was demonstrated that the head shape of newborn piglets is a good selection criteria for identifying piglets that need oral supplementation during the neonatal stage.

Journal ArticleDOI
TL;DR: It appears that EOBC supplementation can enhance rumen fermentation in such a way that may favor beef production as well as improve animal performance and feed efficiency in different ruminant species, using a meta-analysis approach.
Abstract: The present study aimed at investigating the effects of essential oils and their bioactive compounds (EOBC) on rumen fermentation in vivo as well as animal performance and feed efficiency in different ruminant species, using a meta-analysis approach. Ruminant species were classified into 3 classes consisting of beef cattle, dairy cattle, and small ruminants. Two datasets (i.e., rumen fermentation and animal performance) were constructed, according to the available dependent variables within each animal class, from 28 publications (34 experiments) comprising a total of 97 dietary treatments. In addition, changes in rumen fermentation parameters relative to controls (i.e., no EOBC supplementation) of all animal classes were computed. Data were statistically analyzed within each animal class to evaluate the EOBC dose effect, taking into account variations of other variables across experiments (e.g., diet, feeding duration). The dose effect of EOBC on relative changes in fermentation parameters were analyzed across all animal classes. The primary results were that EOBC at doses 0.05), respectively. The analysis of relative changes in rumen fermentation variables suggests that EOBC affected protozoa numbers (P 0.20 g/kg DM) of EOBC had an inhibitory effect on this variable whereas lower doses promoted the number. For performance data, because numbers of observations in beef cattle and small ruminants were small, only those of dairy cattle (DMI, milk yield and milk composition, and feed efficiency) were analyzed. The results revealed no effect of EOBC dose on most parameters, except increased milk protein percentage (P< 0.001) and content (P = 0.006). It appears that EOBC supplementation can enhance rumen fermentation in such a way (i.e., decreased acetate to propionate ratio) that may favor beef production. High doses of EOBC do not necessarily modify rumen fermentation or improve animal performance and feed efficiency. Furthermore, additional attention should be paid to diet composition and supplementation period when evaluating the effects of EOBC in ruminants.

Journal ArticleDOI
TL;DR: OA and MCFA had effects on the intestinal microecology in piglets, and the decrease of the intestinal pH and the reduction of E. coli virulence genes by OA could make the combination of short chain fatty acids andMCFA as interesting gut flora modifiers, which can eventually prevent postweaning diarrhea.
Abstract: Organic short and medium chain fatty acids are used in diets for piglets because they have an impact on the digestive processes and the intestinal microbiota. In this study, 48 pens (2 piglets/pen) were assigned randomly to 4 diets, without additive (control), with organic acids (OA; 0.416% fumaric and 0.328% lactic acid), with medium chain fatty acids (MCFA; 0.15% caprylic and capric acid), and a combination of OA and MCFA, to assess changes in the gastrointestinal microbiota with 12 pens per diet. Eight to nine piglets from each group were euthanized after 4 wk. Organic acids, MCFA, and pH in the digesta were determined and the intestinal microbiota was quantified by real-time PCR. The different diets had no effect on the growth performance. Concentration of added fumaric acid was below the detection limit in the upper small intestine whereas the concentration of lactic acid in the digesta was not affected by the treatments. The added MCFA was recovered in the MCFA treated groups in the stomach, but the concentrations declined in the upper small intestine. Concentration of short chain fatty acids was reduced in the colon digesta in piglets fed diets with OA compared with those fed unsupplemented diets (P = 0.029). The MCFA resulted in a pH reduction of the digesta, likely because of the effect on bacterial acid production. The addition of OA increased cell counts of Bacteroides-Porphyromonas-Prevotella group and clostridial clusters XIVa, I, and IV in the stomach, the clostridial cluster XIVa in the jejunum, and Bacteroides-Porphyromonas-Prevotella in the ileum and reduced counts of Streptococcus spp. in the colon (P < 0.05). The MCFA induced only minor changes in the gastrointestinal microbiota but increased cell counts for the Escherichia-Hafnia-Shigella group in the jejunum and the clostridial cluster XIVa in the colon digesta (P < 0.05). In the colon of piglets fed diets with organic OA, reduced mean cell counts of STb (est-II) positive Escherichia coli were found. In conclusion, OA and MCFA had effects on the intestinal microecology in piglets. The decrease of the intestinal pH and the reduction of E. coli virulence genes by OA could make the combination of short chain fatty acids and MCFA as interesting gut flora modifiers, which can eventually prevent postweaning diarrhea.

Journal ArticleDOI
TL;DR: Dietary fiber in late pregnancy affected sow Colostrum composition but not colostrum yield, increasedcolostrum intake of low birth weight piglets, and decreased preweaning mortality, but these effects were not related to changes in peripartum concentrations of the main hormones involved in lactogenesis.
Abstract: Dietary fiber given during pregnancy may influence sow endocrinology and increase piglet BW gain during early lactation. The aim of the current study was to determine whether dietary fiber given to sows during late pregnancy induces endocrine changes that could modulate sow colostrum production and, thus, piglet performance. From d 106 of pregnancy until parturition, 29 Landrace×Large White nulliparous sows were fed gestation diets containing 23.4 [high fiber (HF); n=15] or 13.3% total dietary fiber [low fiber (LF); n=14]. In the HF diet, wheat and barley were partly replaced by soybean hulls, wheat bran, sunflower meal (undecorticated), and sugar beet pulp. After parturition, sows were fed a standard lactation diet. Colostrum production was estimated during 24 h, starting at the onset of parturition (T0) and ending at 24 h after parturition (T24) based on piglet weight gains. Jugular blood samples were collected from sows on d 101 of pregnancy, daily from d 111 of gestation to d 3 of lactation, and then on d 7 and 21 of lactation (d 0 being the day of parturition). Postprandial kinetics of plasma glucose and insulin concentrations were determined on d 112 of pregnancy. The feeding treatment did not influence sow colostrum yield (3.9±0.2 kg) or piglet weight gain during the first day postpartum to d 21 of lactation. Colostrum intake of low birth weight piglets (<900 g) was greater in litters from HF sows than from LF sows (216±24 vs. 137±22 g; P=0.02). Preweaning mortality was lower in HF than LF litters (6.2 vs. 14.7%; P=0.01). Circulating concentrations of progesterone, prolactin, estradiol-17β, and cortisol were not influenced by the treatment. Sows fed the HF diet had greater postprandial insulin concentrations than LF sows (P=0.02) whereas the postprandial glucose peak was similar. At T24, colostrum produced by HF sows contained 29% more lipid than colostrum produced by LF sows (P=0.04). Immunoglobulin A concentrations in colostrum were lower at T0 and T24 (P=0.02) in HF than LF sows (at T0: 8.6±1.1 vs. 11.9±1.1 mg/mL; at T24: 2.5±0.7 vs. 4.8±0.7 mg/mL). In conclusion, dietary fiber in late pregnancy affected sow colostrum composition but not colostrum yield, increased colostrum intake of low birth weight piglets, and decreased preweaning mortality, but these effects were not related to changes in peripartum concentrations of the main hormones involved in lactogenesis.

Journal ArticleDOI
TL;DR: Results from studies in sheep support the idea that the individual, interactive, and coordinated actions of P4, interferon tau, PG, and cortisol regulate expression of elongation- and implantation-related genes in the endometrial epithelia and that P4 and PG are essential regulators of conceptus elongation.
Abstract: This review integrates established and new information on the biological role of ovarian progesterone (P4) and interferon tau as well as conceptus- and endometrial-derived factors, PG and cortisol, in endometrial function and conceptus elongation during the periimplantation period of pregnancy in ruminants. Interferon tau is the maternal recognition of pregnancy signal that inhibits production of luteolytic pulses of PGF2α by the endometrium to maintain corpora lutea and their production of P4, the unequivocal hormone of pregnancy. Conceptus-endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in endometrial gene expression during pregnancy. Available results from studies in sheep support the idea that the individual, interactive, and coordinated actions of P4, interferon tau, PG, and cortisol regulate expression of elongation- and implantation-related genes in the endometrial epithelia and that P4 and PG are essential regulators of conceptus elongation. The outcome of these gene expression changes is alterations in endometrial secretions that govern conceptus elongation via effects on trophectoderm proliferation, migration, attachment, and adhesion. An increased knowledge of conceptus-endometrial interactions during early pregnancy in ruminants is necessary to understand and elucidate the causes of recurrent pregnancy loss and to provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.

Journal ArticleDOI
TL;DR: The heritability and repeatability of RFI suggest an opportunity to improve feed efficiency through genetic selection, which could reduce feed costs, manure output, and greenhouse gas emissions associated with dairy production.
Abstract: Improved feed efficiency is a primary goal in dairy production to reduce feed costs and negative impacts of production on the environment. Estimates for efficiency of feed conversion to milk production based on residual feed intake (RFI) in dairy cattle are limited, primarily due to a lack of individual feed intake measurements for lactating cows. Feed intake was measured in Holstein cows during the first 90 d of lactation to estimate the heritability and repeatability of RFI, minimum test duration for evaluating RFI in early lactation, and its association with other production traits. Data were obtained from 453 lactations (214 heifers and 239 multiparous cows) from 292 individual cows from September 2007 to December 2011. Cows were housed in a free-stall barn and monitored for individual daily feed consumption using the GrowSafe 4000 System (GrowSafe Systems, Ltd., Airdrie, AB, Canada). Animals were fed a total mixed ration 3 times daily, milked twice daily, and weighed every 10 to 14 d. Milk yield was measured at each milking. Feed DM percentage was measured daily, and nutrient composition was analyzed from a weekly composite. Milk composition was analyzed weekly, alternating between morning and evening milking periods. Estimates of RFI were determined as the difference between actual energy intake and predicted intake based on a linear model with fixed effects of parity (1, 2, ≥ 3) and regressions on metabolic BW, ADG, and energy-corrected milk yield. Heritability was estimated to be moderate (0.36 ± 0.06), and repeatability was estimated at 0.56 across lactations. A test period through 53 d in milk (DIM) explained 81% of the variation provided by a test through 90 DIM. Multiple regression analysis indicated that high efficiency was associated with less time feeding per day and slower feeding rate, which may contribute to differences in RFI among cows. The heritability and repeatability of RFI suggest an opportunity to improve feed efficiency through genetic selection, which could reduce feed costs, manure output, and greenhouse gas emissions associated with dairy production.

Journal ArticleDOI
TL;DR: Results indicate that accuracy of gEBV from imputed genotypes depends on the level of genotyping in close relatives and the size of the genotyped dataset, with the largest decrease observed from L3k to L450.
Abstract: Genomic selection can be implemented in pig breeding at a reduced cost using genotype imputation Accuracy of imputation and the impact on resulting genomic breeding values (gEBV) was investigated High-density genotype data was available for 4,763 animals from a single pig line Three low-density genotype panels were constructed with SNP densities of 450 (L450), 3,071 (L3k) and 5,963 (L6k) Accuracy of imputation was determined using 184 test individuals with no genotyped descendants in the data but with parents and grandparents genotyped using the Illumina PorcineSNP60 Beadchip Alternative genotyping scenarios were created in which parents, grandparents, and individuals that were not direct ancestors of test animals (Other) were genotyped at high density (S1), grandparents were not genotyped (S2), dams and granddams were not genotyped (S3), and dams and granddams were genotyped at low density (S4) Four additional scenarios were created by excluding Other animal genotypes Test individuals were always genotyped at low density Imputation was performed with AlphaImpute Genomic breeding values were calculated using the single-step genomic evaluation Test animals were evaluated for the information retained in the gEBV, calculated as the correlation between gEBV using imputed genotypes and gEBV using true genotypes Accuracy of imputation was high for all scenarios but decreased with fewer SNP on the low-density panel (0995 to 0965 for S1) and with reduced genotyping of ancestors, where the largest changes were for L450 (0965 in S1 to 0914 in S3) Exclusion of genotypes for Other animals resulted in only small accuracy decreases Imputation accuracy was not consistent across the genome Information retained in the gEBV was related to genotyping scenario and thus to imputation accuracy Reducing the number of SNP on the low-density panel reduced the information retained in the gEBV, with the largest decrease observed from L3k to L450 Excluding Other animal genotypes had little impact on imputation accuracy but caused large decreases in the information retained in the gEBV These results indicate that accuracy of gEBV from imputed genotypes depends on the level of genotyping in close relatives and the size of the genotyped dataset Fewer high-density genotyped individuals are needed to obtain accurate imputation than are needed to obtain accurate gEBV Strategies to optimize development of low-density panels can improve both imputation and gEBV accuracy

Journal ArticleDOI
TL;DR: TM of the embryo modified the physiology of broilers in the long term as a possible adaptation for heat tolerance, without affecting breast meat quality, as highlighted in this study.
Abstract: Selection in broiler chickens has increased muscle mass without similar development of the cardiovascular and respiratory systems, resulting in limited ability to sustain high ambient temperatures. The aim of this study was to determine the long-lasting effects of heat manipulation of the embryo on the physiology, body temperature (Tb), growth rate and meat processing quality of broiler chickens reared in floor pens. Broiler chicken eggs were incubated in control conditions (37.8°C, 56% relative humidity; RH) or exposed to thermal manipulation (TM; 12 h/d, 39.5°C, 65% RH) from d 7 to 16 of embryogenesis. This study was planned in a pedigree design to identify possible heritable characters for further selection of broiler chickens to improve thermotolerance. Thermal manipulation did not affect hatchability but resulted in lower Tb at hatching and until d 28 post-hatch, with associated changes in plasma thyroid hormone concentrations. At d 34, chickens were exposed to a moderate heat challenge (5 h, 32°C). Greater O2 saturation and reduced CO2 partial pressure were observed (P 0.17). In conclusion, TM of the embryo modified the physiology of broilers in the long term as a possible adaptation for heat tolerance, without affecting breast meat quality. This study highlights the value of 2 new heritable characters involved in thermoregulation for further broiler selection.

Journal ArticleDOI
TL;DR: New selection indexes including RFI can be envisaged to efficiently disentangle the responses to selection on growth rate and body composition from those on feed efficiency, with favorable impacts on N and P excretions, particularly in sire pig breeds.
Abstract: Residual feed intake (RFI) is defined as the difference between the observed ADFI and the ADFI predicted from production and maintenance requirements. The objectives of this study were to evaluate RFI as a selection criterion to improve feed efficiency and its potential to reduce N and P excretion in 4 pig breeds. Data were collected between 2000 and 2009 in French central test stations for 2 dam breeds [French Landrace (LR) and Large White (LWD)], and 2 sire breeds [Large White (LWS) and Pietrain (PP)]. Numbers of recorded pigs were 6407, 10,694, 2342, and 2448 for the LR, LWD, LWS, and PP breeds, respectively. All PP animals were genotyped for the halothane mutation. This data set was used to calculate RFI equations for each of the 4 breeds, and to estimate genetic parameters for RFI together with growth, carcass, and meat quality traits, and N and P excretion during the test period (35 to 110 kg BW). The RFI explained 20.1% in PP, 26.5% in LWS, 27.6% in LWD, and 29.5% in LR of the phenotypic variability of ADFI. The PP breed differed from the others in this respect, probably due to a lower impact of the variation of body composition on ADFI. Heritability estimates of RFI ranged from 0.21 ± 0.03 (LWD) to 0.33 ± 0.06 (PP) depending on the breed. Heritabilities of N and P excretion traits ranged from 0.29 ± 0.06 to 0.40 ± 0.06. The RFI showed positive genetic correlations with feed conversion ratio (FCR) and excretion traits, these correlations being greater in the sire breeds (from 0.57 to 0.86) than in the dam breeds (from 0.38 to 0.53). Compared with FCR, RFI had weaker genetic correlations with carcass composition, growth rate, and excretion traits. Estimates of genetic correlations between FCR and excretion traits were very close to 1 for all breeds. Finally, excretion traits were, at the genetic level, correlated positively with ADFI, negatively with growth rate and carcass leanness, whereas the halothane n mutation in PP was shown to reduce N and P excretion levels. To conclude, new selection indexes including RFI can be envisaged to efficiently disentangle the responses to selection on growth rate and body composition from those on feed efficiency, with favorable impacts on N and P excretions, particularly in sire pig breeds. However, the switch from FCR to RFI in selection indexes should not resolve the genetic antagonism between feed efficiency and meat quality.