scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Microbiology in 1998"


Journal ArticleDOI
TL;DR: The isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic are reported and evidence that microcolonies form by aggregation of cells present in the monolayer is presented.
Abstract: The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective (sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation.

2,712 citations


Journal ArticleDOI
TL;DR: The genetic analyses suggest that biofilm formation can proceed via multiple, convergent signalling pathways, which are regulated by various environmental signals, and that of the 24 sad mutants analysed in this study, only three had defects in genes of known function.
Abstract: Populations of surface-attached microorganisms comprising either single or multiple species are commonly referred to as biofilms. Using a simple assay for the initiation of biofilm formation (e.g. attachment to an abiotic surface) by Pseudomonas fluorescens strain WCS365, we have shown that: (i) P. fluorescens can form biofilms on an abiotic surface when grown on a range of nutrients; (ii) protein synthesis is required for the early events of biofilm formation; (iii) one (or more) extracytoplasmic protein plays a role in interactions with an abiotic surface; (iv) the osmolarity of the medium affects the ability of the cell to form biofilms. We have isolated transposon mutants defective for the initiation of biofilm formation, which we term surface attachment defective (sad). Molecular analysis of the sad mutants revealed that the ClpP protein (a component of the cytoplasmic Clp protease) participates in biofilm formation in this organism. Our genetic analyses suggest that biofilm formation can proceed via multiple, convergent signalling pathways, which are regulated by various environmental signals. Finally, of the 24 sad mutants analysed in this study, only three had defects in genes of known function. This result suggests that our screen is uncovering novel aspects of bacterial physiology.

2,439 citations


Journal ArticleDOI
TL;DR: It is demonstrated that E. coli forms biofilms on multiple abiotic surfaces in a nutrient‐dependent fashion and type I pili (harbouring the mannose‐specific adhesin, FimH) are required for initial surface attachment and thatMannose inhibits normal attachment.
Abstract: We have used Escherichia coli as a model system to investigate the initiation of biofilm formation. Here, we demonstrate that E. coli forms biofilms on multiple abiotic surfaces in a nutrient-dependent fashion. In addition, we have isolated insertion mutations that render this organism defective in biofilm formation. One-half of these mutations was found to perturb normal flagellar function. Using defined fli, flh, mot and che alleles, we show that motility, but not chemotaxis, is critical for normal biofilm formation. Microscopic analyses of these mutants suggest that motility is important for both initial interaction with the surface and for movement along the surface. In addition, we present evidence that type I pili (harbouring the mannose-specific adhesin, FimH) are required for initial surface attachment and that mannose inhibits normal attachment. In light of the observations presented here, a working model is discussed that describes the roles of both motility and type I pili in biofilm development.

1,618 citations


Journal ArticleDOI
TL;DR: Major breakthroughs and developments in the genetic basis of A/E lesion formation, signal transduction, protein translocation, host cell receptors and intestinal colonization are highlighted in this review.
Abstract: Enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) constitute a significant risk to human health worldwide. Both pathogens colonize the intestinal mucosa and, by subverting intestinal epithelial cell function, produce a characteristic histopathological feature known as the 'attaching and effacing' (A/E) lesion. Although EPEC was the first E. coli to be associated with human disease in the 1940s and 1950s, it was not until the late 1980s and early 1990s that the mechanisms and bacterial gene products used to induce this complex brush border membrane lesion and diarrhoeal disease started to be unravelled. During the past few months, there has been a burst of new data that have revolutionized some basic concepts of the molecular basis of bacterial pathogenesis in general and EPEC pathogenesis in particular. Major breakthroughs and developments in the genetic basis of A/E lesion formation, signal transduction, protein translocation, host cell receptors and intestinal colonization are highlighted in this review.

717 citations


Journal ArticleDOI
TL;DR: It is concluded that SPI‐2 genes are specifically expressed upon entry into mammalian cells and are required for intracellular growth in host cells in vivo and in vitro.
Abstract: Salmonella pathogenicity island 2 (SPI-2) encodes a putative type III secretion system necessary for systemic infection in animals. We have investigated the transcriptional organization and regulation of SPI-2 by creating gfp fusions throughout the entire gene cluster. These gfp fusions demonstrated that SPI-2 genes encoding structural, regulatory and previously uncharacterized putative secreted proteins are preferentially expressed in the intracellular environment of the host macrophage. Furthermore, the transcription of these genes within host cells was dependent on the two-component regulatory system SsrA/SsrB and an acidic phagosomal environment. Most SPI-2 mutants failed to replicate to the same level as wild-type strains in murine macrophages and human epithelial cells. In orally infected mice, SPI-2 mutants colonized the Peyer's patches but did not progress to the mesenteric lymph nodes. We conclude that SPI-2 genes are specifically expressed upon entry into mammalian cells and are required for intracellular growth in host cells in vivo and in vitro.

652 citations


Journal ArticleDOI
TL;DR: Data suggest that, in vivo, one of the functions of the SPI‐2 secretion system is to enable intracellular bacterial proliferation.
Abstract: Summary The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.

643 citations


Journal ArticleDOI
TL;DR: This work represents the first identification of non‐regulatory genes necessary for modification of lipid A and subsequent antimicrobial peptide resistance, and provides support for the hypothesis that lipid A aminoarabinose modification promotes resistance to cationic antimicro peptides.
Abstract: Antimicrobial peptides are distributed throughout the animal kingdom and are a key component of innate immunity. Salmonella typhimurium regulates mechanisms of resistance to cationic antimicrobial peptides through the two-component systems PhoP-PhoQ and PmrA-PmrB. Polymyxin resistance is encoded by the PmrA-PmrB regulon, whose products modify the lipopolysaccharide (LPS) core and lipid A regions with ethanolamine and add aminoarabinose to the 4' phosphate of lipid A. Two PmrA-PmrB-regulated S. typhimurium loci (pmrE and pmrF) have been identified that are necessary for resistance to polymyxin and for the addition of aminoarabinose to lipid A. One locus, pmrE, contains a single gene previously identified as pagA (or ugd) that is predicted to encode a UDP-glucose dehydrogenase. The second locus, pmrF, is the second gene of a putative operon predicted to encode seven proteins, some with similarity to glycosyltransferases and other complex carbohydrate biosynthetic enzymes. Genes immediately flanking this putative operon are also regulated by PmrA-PmrB and/or have been associated with S. typhimurium polymyxin resistance. This work represents the first identification of non-regulatory genes necessary for modification of lipid A and subsequent antimicrobial peptide resistance, and provides support for the hypothesis that lipid A aminoarabinose modification promotes resistance to cationic antimicrobial peptides.

610 citations


Journal ArticleDOI
TL;DR: To identify the Zn2+‐dependent regulator, constitutive mutants were isolated and tested for complementation by a gene bank of E. coli and the Zur protein showed 27% sequence identity with the iron regulator Fur.
Abstract: In Escherichia coli, lacZ operon fusions were isolated that were derepressed under iron repletion and repressed under iron depletion. Two fusions were localized in genes that formed an operon whose gene products had characteristics of a binding protein-dependent transport system. The growth defect of these mutants on TY medium containing 5mM EGTA was compensated for by the addition of Zn2+. In the presence of 0.5mM EGTA, only the parental strain was able to take up 65Zn2+. This high-affinity transport was energized by ATP. The genes were named znuACB (for zinc uptake; former name yebLMI) and localized at 42 min on the genetic map of E. coli. At high Zn2+ concentrations, the znu mutants took up more 65Zn2+ than the parental strain. The high-affinity 65Zn2+ uptake was repressed by growth in the presence of 10 microM Zn2+. A znuA-lacZ operon fusion was repressed by 5 microM Zn2+ and showed a more than 20-fold increase in beta-galactosidase activity when Zn2+ was bound to 1.5 microM TPEN [tetrakis-(2-pyridylmethyl) ethylenediamine]. To identify the Zn2+-dependent regulator, constitutive mutants were isolated and tested for complementation by a gene bank of E. coli. A complementing gene, yjbK of the E. coli genome, was identified and named zur (for zinc uptake regulation). The Zur protein showed 27% sequence identity with the iron regulator Fur. High-affinity 65Zn2+ transport of the constitutive zur mutant was 10-fold higher than that of the uninduced parental strain. An in vivo titration assay suggested that Zur binds to the bidirectional promoter region of znuA and znuCB.

470 citations


Journal ArticleDOI
TL;DR: Current information supports a model in which CsrA exists in an equilibrium between CsrB and CSRA‐regulated mRNAs, which predicts that CSRB levels may be a key determinant of CsrC activity in the cell.
Abstract: Csr (carbon storage regulator) is a recently discovered global regulatory system that controls bacterial gene expression post-transcriptionally. Its effector is a small RNA-binding protein referred to as CsrA or, in phytopathogenic Erwinia species, RsmA (repressor of stationary phase metabolites). Numerous genes whose expression occurs in the stationary phase of growth are repressed by csrA/rsmA, and csrA activates certain exponential-phase metabolic pathways. Glycogen synthesis and catabolism, gluconeogenesis, glycolysis, motility, cell surface properties and adherence are modulated by csrA in Escherichia coli, while the production of several secreted virulence factors, the plant hypersensitive response elicitor HrpN(Ecc) and, potentially, other secondary metabolites are regulated by rsmA in Erwinia carotovora. CsrA represses glycogen synthesis by binding to and destabilizing glgCAP mRNA and is hypothesized to repress other genes by a similar mechanism. The second component of the Csr system is CsrB (AepH in Erwinia species), a non-coding RNA molecule that forms a large globular ribonucleoprotein complex with approximately 18 CsrA subunits and antagonizes the effects of CsrA in vivo. Highly repeated sequence elements found within the loops of predicted stem-loops and other single-stranded segments of CsrB RNA may facilitate CsrA binding. Current information supports a model in which CsrA exists in an equilibrium between CsrB and CsrA-regulated mRNAs, which predicts that CsrB levels may be a key determinant of CsrA activity in the cell. The presence of csrA homologues in phylogenetically diverse species further suggests that this novel kind of regulatory system is likely to play a broad role in modulating eubacterial gene expression.

457 citations


Journal ArticleDOI
TL;DR: A colony morphology type is described in which cells of Salmonella typhimurium form a rigid multicellular network with expression of thin aggregative fimbriae that mediate tight intercellular bonds.
Abstract: A colony morphology type is described in which cells of Salmonella typhimurium form a rigid multicellular network with expression of thin aggregative fimbriae that mediate tight intercellular bonds. Surface translocation of cells on plates and adherence to glass and polystyrene surfaces in biofilm assays are further characteristics of the morphotype. This morphotype (rdar) is normally expressed only at low temperature. However, in two unrelated S. typhimurium strains, spontaneous mutants were found forming rdar colonies independent of temperature. Allelic replacement proved a single point mutation in the promoter region of PagfD in each of the two mutants to be responsible for the constitutive phenotype of a multicellular behaviour. Transcription levels of the two divergently transcribed agf operons required for biogenesis of thin aggregative fimbriae by Northern blot analysis with gene probes for agfA and agfD as well as expression levels of AgfA by Western blotting were compared in the wild type, the constitutive mutants and their respective ompR and rpoS- derivatives. In the wild type the rdar morphotype and expression of thin aggregative fimbriae are restricted to low temperature on plates containing rich medium of low osmolarity, but biogenesis of thin aggregative fimbriae occurs upon iron starvation at 37 degrees C. In the upregulated mutants biogenesis of thin aggregative fimbriae is only abolished at high osmolarity at 37 degrees C and in the exponential phase in broth culture. Control of expression of thin aggregative fimbriae and rdar morphology takes place at the transcriptional level at the agfD promoter. A functional ompR allele is required, however an rpoS mutation abolishes transcription only in the wild type, but has no influence on expression of thin aggregative fimbriae in the constitutive mutants.

445 citations


Journal ArticleDOI
TL;DR: The surface‐located fibrinogen‐binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall‐anchored region, suggesting that it could contribute to the pathogenicity of biomaterial‐related infections.
Abstract: The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the alpha- and beta-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the gamma-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.

Journal ArticleDOI
TL;DR: These PIs are the first in any Gram‐positive species and the first for which mobility has been demonstrated and may be responsible for the spread of TSST‐1 production among S. aureus strains.
Abstract: Summary Tst, the gene for toxic shock syndrome toxin-1 (TSST1), is part of a 15.2 kb genetic element in Staphylococcus aureus that is absent in TSST-1-negative strains. The prototype, in RN4282, is flanked by a 17 nucleotide direct repeat and contains genes for a second possible superantigen toxin, a Dichelobacter nodosus VapE homologue and a putative integrase. It is readily transferred to a recA π recipient, and it always inserts into a unique chromosomal copy of the 17 nucleotide sequence in the same orientation. It is excised and circularized by staphylococcal phages f13 and 80a and replicates during the growth of the latter, which transduces it at very high frequency. Because of its site and orientation specificity and because it lacks other identifiable phage-like genes, we consider it to be a pathogenicity island (PI) rather than a transposon or a defective phage. The tst element in RN4282, near tyrB, is designated SaPI1. That in RN3984 in the trp region is only partially homologous to SaPI1 and is excised by phage 80 but not by 80a. It is designated SaPI2. These PIs are the first in any Gram-positive species and the first for which mobility has been demonstrated. Their mobility may be responsible for the spread of TSST-1 production among S. aureus strains.

Journal ArticleDOI
TL;DR: Results demonstrate that, in vitro and in vivo, lipid II serves as a docking molecule for nisin and epidermin, but not for Pep5 and epilancin K7, and thereby facilitates the formation of pores in the cytoplasmic membrane.
Abstract: It is generally assumed that type A lantibiotics primarily kill bacteria by permeabilization of the cytoplasmic membrane. As previous studies had demonstrated that nisin interacts with the membrane-bound peptidoglycan precursors lipid I and lipid II, we presumed that this interaction could play a role in the pore formation process of lantibiotics. Using a thin-layer chromatography system, we found that only nisin and epidermin, but not Pep5, can form a complex with [14C]-lipid II. Lipid II was then purified from Micrococcus luteus and incorporated into carboxyfluorescein-loaded liposomes made of phosphatidylcholine and cholesterol (1:1). Liposomes supplemented with 0.05 or 0.1 mol% of lipid II did not release any marker when treated with Pep5 or epilancin K7 (peptide concentrations of up to 5 mol% were tested). In contrast, as little as 0.01 mol% of epidermin and 0.1 mol% of nisin were sufficient to induce rapid marker release; phosphatidylglycerol-containing liposomes were even more susceptible. Controls with moenomycin-, undecaprenol- or dodecaprenolphosphate-doped liposomes demonstrated the specificity of the lantibiotics for lipid II. These results were correlated with intact cells in an in vivo model. M. luteus and Staphylococcus simulans were depleted of lipid II by preincubation with the lipopeptide ramoplanin and then tested for pore formation. When applied in concentrations below the minimal inhibitory concentration (MIC) and up to 5-10 times the MIC, the pore formation by nisin and epidermin was blocked; at higher concentrations of the lantibiotics the protective effect of ramoplanin disappeared. These results demonstrate that, in vitro and in vivo, lipid II serves as a docking molecule for nisin and epidermin, but not for Pep5 and epilancin K7, and thereby facilitates the formation of pores in the cytoplasmic membrane.

Journal ArticleDOI
TL;DR: It is demonstrated that a ygaG mutant has the perR phenotype: it is highly resistant to peroxides and overexpresses catalase, alkyl hydroperoxide reductase and the DNA binding protein MrgA, and it encodes the peroxide regulon repressor and is allelic with perR.
Abstract: Fur (ferric uptake regulator) proteins control iron uptake in many Gram-negative bacteria. Although Fur homologues have been identified in Gram-positive bacteria, their roles in gene regulation are unknown. Genome sequencing has revealed three fur homologues in Bacillus subtilis: yqkL, yqfV and ygaG. We demonstrate that yqkL encodes an iron uptake repressor: both siderophore biosynthesis and transcription of ferri-siderophore uptake genes is constitutive in the yqkL mutant. Thus, yqkL encodes a repressor that is functionally as well as structurally related to Fur. B. subtilis peroxide stress genes are induced by either H2O2 or by metal ion limitation. Previous genetic studies defined a regulatory locus, perR, postulated to encode the peroxide regulon repressor. We demonstrate that a ygaG mutant has the perR phenotype: It is highly resistant to peroxides and overexpresses catalase, alkyl hydroperoxide reductase and the DNA binding protein MrgA. Nine spontaneous perR mutations, isolated by virtue of their ability to derepress mrgA transcription in the presence of managanous ion, all contain sequence changes in the ygaG locus and can be complemented by the cloned ygaG gene. Thus, ygaG encodes the peroxide regulon repressor and is allelic with perR.

Journal ArticleDOI
TL;DR: Differences in these clusters reflect important structural variations in the outer core oligosaccharides and provide a basis for ascribing functions to the genes in these model clusters, whereas highly conserved regions within these clusters suggest a critical and unalterable function for the inner region of the core.
Abstract: Bacterial lipopolysaccharides (LPS) are unique and complex glycolipids that provide characteristic components of the outer membranes of Gram-negative bacteria. In LPS of the Enterobacteriaceae, the core oligosaccharide links a highly conserved lipid A to the antigenic O-polysaccharide. Structural diversity in the core oligosaccharide is limited by the constraints imposed by its essential role in outer membrane stability and provides a contrast to the hypervariable O-antigen. The genetics of core oligosaccharide biosynthesis in Salmonella and Escherichia coli K-12 have served as prototypes for studies on the LPS and lipo-oligosaccharides from a growing range of bacteria. However, despite the wealth of knowledge, there remains a number of unanswered questions, and direct experimental data are not yet available to define the precise mechanism of action of many gene products. Here we present a comparative analysis of the recently completed sequences of the major core oligosaccharide biosynthesis gene clusters from the five known core types in E. coli and the Ra core type of Salmonella enterica serovar Typhimurium and discuss advances in the understanding of the related biosynthetic pathways. Differences in these clusters reflect important structural variations in the outer core oligosaccharides and provide a basis for ascribing functions to the genes in these model clusters, whereas highly conserved regions within these clusters suggest a critical and unalterable function for the inner region of the core.

Journal ArticleDOI
TL;DR: It is shown that MtzR results from loss of oxygen‐insensitive NADPH nitroreductase activity, and suggests that many rdxA (MtzR) mutations may have been selected by prior use of Mtz against other infections.
Abstract: Metronidazole (Mtz) is a critical component of combination therapies that are used against Helicobacter pylori, the major cause of peptic ulcer disease. Many H. pylori strains are Mtz resistant (MtzR), however, and here we show that MtzR results from loss of oxygen-insensitive NADPH nitroreductase activity. The underlying gene (called 'rdxA') was identified in several steps: transformation of Mtz-susceptible (MtzS) H. pylori with cosmids from a MtzR strain, subcloning, polymerase chain reaction (PCR) and DNA sequencing. We also found that (i) E. coli (normally MtzR) was rendered MtzS by a functional H. pylori rdxA gene; (ii) introduction of rdxA on a shuttle vector plasmid into formerly MtzR H. pylori rendered it MtzS; and (iii) replacement of rdxA in MtzS H. pylori with an rdxA::camR null insertion allele resulted in a MtzR phenotype. The 630 bp rdxA genes of five pairs of H. pylori isolates from infections that were mixed (MtzR/MtzS), but uniform in overall genotype, were sequenced. In each case, the paired rdxA genes differed from one another by one to three base substitutions. Typical rdxA genes from unrelated isolates differ by 5% in DNA sequence. Therefore, the near identity of rdxA genes from paired MtzR and MtzS isolates implicates de novo mutation, rather than horizontal gene transfer in the development of MtzR. Horizontal gene transfer could readily be demonstrated under laboratory conditions with mutant rdxA alleles. RdxA is a homologue of the classical nitroreductases (CNRs) of the enteric bacteria, but differs in cysteine content (6 vs. 1 or 2 in CNRs) and isoelectric point (pI=7.99 vs. 5.4-5.6), which might account for its reduction of low redox drugs such as Mtz. We suggest that many rdxA (MtzR) mutations may have been selected by prior use of Mtz against other infections. H. pylori itself is an early risk factor for gastric cancer; the possibility that its carcinogenic effects are exacerbated by Mtz use, which is frequent in many societies, or the reduction of nitroaromatic compounds to toxic, mutagenic and carcinogenic products, may be of significant concern in public health.

Journal ArticleDOI
TL;DR: Genetic studies show that L. pneumophila requires DotA expression before macrophage uptake in order to establish an intracellular site for replication, but the bacteria do not appear to require continuous expression of the DotA protein to maintain a replicative phagosome.
Abstract: Numerous intracellular bacterial pathogens modulate the nature of the membrane-bound compartment in which they reside, although little is known about the molecular basis for this control. Legionella pneumophila is a bacterial pathogen able to grow within human alveolar macrophages and residing in a phagosome that does not fuse with lysosomes. This study demonstrates that the dotA product is required to regulate trafficking of the L. pneumophila phagosome. Phagosomes containing L. pneumophila dotA+ bacteria exhibited differential trafficking profiles when compared with isogenic dotA mutants. Phagosomes containing dotA mutants showed rapid accumulation of the lysosomal glycoprotein LAMP-1 as early as 5 min after uptake, whereas the majority of wild-type L. pneumophila phagosomes did not acquire LAMP-1. The association of LAMP-1 with phagosomes containing dotA mutant bacteria was concomitant with the appearance of the small GTP-binding protein Rab7 on the vacuolar membrane. These data demonstrate that phagosomes containing replication-competent L. pneumophila evade early endocytic fusion events. In contrast, the kinetics of LAMP-1 and Rab7 association indicate that the dotA mutants are routed along a well-characterized endocytic pathway leading to fusion with lysosomes. Genetic studies show that L. pneumophila requires DotA expression before macrophage uptake in order to establish an intracellular site for replication. However, the bacteria do not appear to require continuous expression of the DotA protein to maintain a replicative phagosome. These data indicate that DotA is one factor that plays a fundamental role in regulating initial phagosome trafficking decisions either upon or immediately after macrophage uptake.

Journal ArticleDOI
TL;DR: This work shows that the relBE genes of Escherichia coli K‐12 have all the basic features previously connected with toxin–antitoxin systems, and proposes a model that explains the delayed relaxed phenotype associated with mutations in relB.
Abstract: Toxin-antitoxin systems are defined as a group of plasmid- and chromosome-encoded loci that specify a cell toxin and a protein antitoxin. Plasmid-encoded toxin-antitoxin systems stabilize their replicons by killing plasmid-free cells. Here, we show that the relBE genes of Escherichia coli K-12 have all the basic features previously connected with toxin-antitoxin systems: (i) relE encodes a cytotoxin lethal or inhibitory to host cells; (ii) relB encodes an antitoxin that prevents the lethal action of the relE-encoded toxin; (iii) the relBE genes stabilize a mini-R1 test plasmid; and (iv) the RelB antitoxin autoregulates the relBEF operon at the level of transcription. Using database searching, we found relBE homologues on the chromosomes of E. coli K-12, Haemophilus influenzae and Vibrio cholerae. A fifth relBE homologue was identified on the enterotoxin encoding E. coli plasmid P307. Indirect evidence suggests that the toxicity of RelE may be related to the inhibition of protein synthesis. Based on these observations, we propose a model that explains the delayed relaxed phenotype associated with mutations in relB.

Journal ArticleDOI
TL;DR: The E. coli CspA family is described, consisting of nine genes from cspA to cspI, which resulted from a number of gene duplications and, after subsequent adaptation, resulted in specific groups of genes that respond to different environmental stresses.
Abstract: CspA was originally found as the major cold-shock protein in Escherichia coli, consisting of 70-amino-acid residues. It forms a beta-barrel structure with five anti-parallel beta-strands and functions as an RNA chaperone. Its dramatic but transient induction upon cold shock is regulated at the level of transcription, mRNA stability and translation. Surprisingly, E. coli contains a large CspA family, consisting of nine genes from cspA to cspI. Phylogenetic analysis of these gene products and the cold-shock domain of human YB-1 protein reveals that there are two major branches in the evolution of CspA homologues: one branch for CspF and CspH, and another for all the other known CspA homologues from both prokaryotes and eukaryotes. The locations of these genes on the E. coli chromosome suggest that the large CspA family probably resulted from a number of gene duplications and, after subsequent adaptation, resulted in specific groups of genes that respond to different environmental stresses; for example, cspA, cspB and cspG for cold-shock stress and cspD for nutritional deprivation. The E. coli CspA family will be discussed in terms of their structures and functions, and their gene structures and regulation.

Journal ArticleDOI
TL;DR: It is shown here that gonococcal pilT mutants constructed in vitro no longer display twitching motility, and that they have concurrently lost the ability to undergo natural transformation, despite the expression of structurally and morphologically normal Tfp.
Abstract: Neisseria gonorrhoeae, the Gram-negative aetiological agent of gonorrhoeae, is one of many mucosal pathogens of man that expresses competence for natural transformation. Expression of this phenotype by gonococci appears to rely on the expression of type IV pili (Tfp), but the mechanistic basis for this relationship remains unknown. During studies of gonococcal pilus biogenesis, a homologue of the PilT family of proteins, required for Tfp-dependent twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was discovered. Like the findings in these other species, we show here that gonococcal PilT mutants constructed in vitro no longer display twitching motility. In addition, we demonstrate that they have concurrently lost the ability to undergo natural transformation, despite the expression of structurally and morphologically normal Tpf. These results were confirmed by the findings that two classes of spontaneous mutants that failed to express twitching motility and transformability carried mutations in PilT. Piliated PilT mutants and a panel of pilus assembly mutants were found to be deficient in sequence-specific DNA uptake into the cell, the earliest demonstrable step in neisserial competence. The PilT-deficient strains represent the first genetically defined mutants that are defective in DNA uptake but retain Tfp expression.

Journal ArticleDOI
TL;DR: Differences in the recombinational junctions and sequence polymorphisms within the introduced capsular genes, suggested that the eight serotype 19F variants emerged on at least four separate occasions, suggesting changes in capsular type by recombination may be relatively frequent in pneumococci.
Abstract: Summary Serotype 19F variants of the major Spanish multiresistant serotype 23F clone of Streptococcus pneumoniae have been proposed to have arisen by recombinational exchanges at the capsular biosynthetic locus. Members of the Spanish multiresistant serotype 23F clone and the serotype 19F variants were confirmed to be essentially identical in overall genotype, as they were indistinguishable by REP-PCR, and had identical sequences at three polymorphic housekeeping genes. Eight serotype 19F variants were studied and all had large recombinational replacements at the capsular biosynthetic locus. In all cases, one of the recombinational cross-over points appeared to be upstream of dexB, which flanks one end of the capsular locus, and in six of the variants the other cross-over point was downstream of aliA, which flanks the other end of the locus. In two strains a recombinational cross-over point between the introduced serotype 19F capsular region and that of the Spanish serotype 23F clone could be clearly identified, within cpsN in one strain and within cpsM in the other. The differences in the recombinational junctions and sequence polymorphisms within the introduced capsular genes, suggested that the eight serotype 19F variants emerged on at least four separate occasions. Changes in capsular type by recombination may therefore be relatively frequent in pneumococci and this has implications for the long-term efficacy of conjugate pneumococcal vaccines that will protect against only a limited number of serotypes.

Journal ArticleDOI
TL;DR: Alternative sigma factors provide a means of regulating gene expression in response to various extracellular changes, and appear to control a variety of functions, including expression of heat‐shock genes in Escherichia coli, biosynthesis of alginates and carotenoids in Pseudomonas aeruginosa and Myxococcus xanthus, respectively.
Abstract: Alternative sigma factors provide a means of regulating gene expression in response to various extracellular changes. One such class of sigma factors appears to control a variety of functions, including expression of heat-shock genes in Escherichia coli, biosynthesis of alginates and carotenoids in Pseudomonas aeruginosa and Myxococcus xanthus, respectively, iron uptake in E. coli and Pseudomonas spp., nickel and cobalt efflux in Alcaligenes europhus, plant pathogenicity in Pseudomonas syringae and synthesis of outer membrane proteins in Photobacterium sp. strain SS9. Most of these activities deal with extracytoplasmic functions, and such sigmas have been designated as ECF sigma factors. They have also been characterized in Mycobacteria as well as gram-positive bacteria such as Streptomyces coelicolor and Bacillus subtilus and the archaea Sulpholobus acidocaldarius. ECF factors belong to a subfamily of the sigma 70 class, based on their sequence conservation and function across bacterial species. The promoter consensus sequences recognized by the ECF factors are also highly conserved. In most of the cases, the activity of these factors is modulated by a cognate inner membrane protein that has been shown, both in E. coli and in P. aeruginosa, to act as an anti-sigma activity. This inner membrane protein is presumed to serve as a sensor and signalling molecule, allowing an adaptive response to specific environmental change. Presumably, an on-and-off switch of the anti-sigma activity leads to the release of the sigma factor and thereby to the co-ordinate transcription of the specific regulon it governs.

Journal ArticleDOI
TL;DR: The results indicate that XlnR is a transcriptional activator of the xylanolytic system in A. niger and may be an important and conserved cis‐acting element in induction of x Dylanolytic genes in filamentous fungi
Abstract: Complementation by transformation of an Aspergillus niger mutant lacking xylanolytic activity led to the isolation of the xlnR gene. The xlnR gene encodes a polypeptide of 875 amino acids capable of forming a zinc binuclear cluster domain with similarity to the zinc clusters of the GAL4 superfamily of transcription factors. The XlnR-binding site 5'-GGCTAAA-3' was deduced after electrophoretic mobility shift assays, DNase I footprinting and comparison of various xylanolytic promoters. The importance of the second G within the presumed XlnR binding site 5'-GGCTAAA-3' was confirmed in vitro and in vivo. The 5'-GGCTAAA-3' consensus sequence is found within several xylanolytic promoters of various Aspergillus species and Penicillium chrysogenum. Therefore, this sequence may be an important and conserved cis-acting element in induction of xylanolytic genes in filamentous fungi. Our results indicate that XlnR is a transcriptional activator of the xylanolytic system in A. niger.

Journal ArticleDOI
TL;DR: Polar mutations in two TTSS genes, rhcN and the nod‐box controlled regulator of transcription y4xI, block the secretion of both proteins and strongly affect the ability of NGR234 to nodulate a variety of tropical legumes including Pachyrhizus tuberosus and Tephrosia vogelii.
Abstract: The symbiotic plasmid of Rhizobium sp. NGR234 carries a cluster of genes that encodes components of a bacterial type III secretion system (TTSS). In both animal and plant pathogens, the TTSS is an essential component of pathogenicity. Here, we show that secretion of at least two proteins (y4xL and NolX) is controlled by the TTSS of NGR234 and occurs after the induction with flavonoids. Polar mutations in two TTSS genes, rhcN and the nod-box controlled regulator of transcription y4xI, block the secretion of both proteins and strongly affect the ability of NGR234 to nodulate a variety of tropical legumes including Pachyrhizus tuberosus and Tephrosia vogelii.

Journal ArticleDOI
TL;DR: YopJ is required for Y. pseudotuberculosis to downregulate MAP kinases and inhibit the production of TNF‐α in macrophages, which is regulated at the transcriptional and translational levels by several mitogen‐activated protein (MAP) kinases.
Abstract: Exposure of macrophages to lipopolysaccharide (LPS) leads to production of the pro-inflammatory cytokine, tumour necrosis factor alpha (TNF-alpha). Previous studies have suggested that pathogenic Yersinia spp. inhibit LPS-mediated production of TNF-alpha in macrophages, and that one of the Yop proteins secreted by the plasmid-encoded type III pathway is required for this activity. We found that TNF-alpha production was inhibited when J774A.1 murine macrophages were infected with wild-type Y. pseudotuberculosis but not with an isogenic ysc mutant defective for Yop secretion. We inactivated multiple yop genes to identify which of these factors are required for the inhibition of TNF-alpha production. A mutant unable to express yopJ was defective for the inhibition of TNF-alpha production. Production of TNF-alpha is regulated at the transcriptional and translational levels by several mitogen-activated protein (MAP) kinases. The MAP kinases p38 and JNK underwent sustained activation in macrophages infected with the yopJ mutant. Conversely, p38 and JNK were downregulated in macrophages infected with the wild-type strain. The ability of the yopJ mutant to downregulate p38 and JNK and to inhibit production of TNF-alpha was restored by the expression of yopJ+ in trans. Therefore, YopJ is required for Y. pseudotuberculosis to downregulate MAP kinases and inhibit the production of TNF-alpha in macrophages.

Journal ArticleDOI
TL;DR: The Clostridium difficile toxA and toxB genes, encoding cytotoxic and enterotoxic proteins responsible for antibiotic‐associated colitis and pseudomembranous colitis, were shown to be transcribed both from gene‐specific promoters and from promoters of upstream genes, indicating that the toxin genes are subject to a form of catabolite repression.
Abstract: The Clostridium difficile toxA and toxB genes, encoding cytotoxic and enterotoxic proteins responsible for antibiotic-associated colitis and pseudomembranous colitis, were shown to be transcribed both from gene-specific promoters and from promoters of upstream genes. However, the gene-specific transcripts represented the majority of tox gene mRNAs. The 5′ ends of these mRNAs were shown to correspond to DNA sequences that had promoter activity when fused to the Escherichia coliβ-glucuronidase (gusA) gene and introduced into C. perfringens. The appearance of tox mRNA in C. difficile was repressed during exponential growth phase but increased substantially as cells entered stationary phase. When glucose or other rapidly metabolizable sugars were present in the medium, the stationary phase-associated induction was inhibited, indicating that the toxin genes are subject to a form of catabolite repression. This glucose effect was general to many toxinogenic strains having varying levels of toxin production.

Journal ArticleDOI
TL;DR: A set of genes is proposed to form a new regulon controlled by a global termination control system, which the authors designate the S box system, as most of the genes are involved in sulphur metabolism and biosynthesis of methionine and cysteine.
Abstract: The molecular mechanisms for regulation of the genes involved in the biosynthesis of methionine and cysteine are poorly characterized in Bacillus subtilis. Analyses of the recently completed B. subtilis genome revealed 11 copies of a highly conserved motif. In all cases, this motif was located in the leader region of putative transcriptional units, upstream of coding sequences that included genes involved in methionine or cysteine biosynthesis. Additional copies were identified in Clostridium acetobutylicum and Staphylococcus aureus, indicating conservation in other Gram-positive genera. The motif includes an element resembling an intrinsic transcriptional terminator, suggesting that regulation might be controlled at the level of premature termination of transcription. The 5' portion of all of the leaders could fold into a conserved complex structure. Analysis of the yitJ gene, which is homologous to Escherichia coli metH and metF, revealed that expression was induced by starvation for methionine and that induction was independent of the promoter and dependent on the leader region terminator. Mutation of conserved primary sequence and structural elements supported a model in which the 5' portion of the leader forms an anti-antiterminator structure, which sequesters sequences required for the formation of an antiterminator, which, in turn, sequesters sequences required for the formation of the terminator; the anti-antiterminator is postulated to be stabilized by the binding of some unknown factor when methionine is available. This set of genes is proposed to form a new regulon controlled by a global termination control system, which we designate the S box system, as most of the genes are involved in sulphur metabolism and biosynthesis of methionine and cysteine.

Journal ArticleDOI
TL;DR: It is reported that the yopJ locus of the enteropathogen Yersinia pseudotuberculosis encodes a protein that inhibits the activation of NF‐κB transcription factors by a mechanism(s), which prevents the phosphorylation and subsequent degradation of the inhibitor protein IκB.
Abstract: Upon exposure to bacteria, eukaryotic cells activate signalling pathways that result in the increased expression of several defence-related genes. Here, we report that the yopJ locus of the enteropathogen Yersinia pseudotuberculosis encodes a protein that inhibits the activation of NF-kappaB transcription factors by a mechanism(s), which prevents the phosphorylation and subsequent degradation of the inhibitor protein IkappaB. Consequently, eukaryotic cells infected with YopJ-expressing Yersinia become impaired in NF-kappaB-dependent cytokine expression. In addition, the blockage of inducible cytokine production coincides with yopJ-dependent induction of apoptosis. Interestingly, the YopJ protein contains a region that resembles a src homology domain 2 (SH2), and we show that a wild-type version of this motif is required for YopJ activity in suppressing cytokine expression and inducing apoptosis. As SH2 domains are found in several eukaryotic signalling proteins, we propose that YopJ, which we show is delivered into the cytoplasm of infected cells, interacts directly with signalling proteins involved in inductive cytokine expression. The repressive activity of YopJ on the expression of inflammatory mediators may account for the lack of an inflammatory host response observed in experimental yersiniosis. YopJ-like activity may also be a common feature of commensal bacteria that, like Yersinia, do not provoke a host inflammatory response.

Journal ArticleDOI
TL;DR: Signature‐tag transposon mutagenesis screening of a 1520‐member library identified numerous S. aureus genetic loci affecting growth and survival in four complementary animal infection models, providing insight into the complexities of human infection and on the molecular mechanisms that could be targeted by new antibacterial therapies.
Abstract: The Gram-positive bacterium Staphylococcus aureus infects diverse tissues and causes a wide spectrum of diseases, suggesting that it possesses a repertoire of distinct molecular mechanisms promoting bacterial survival in disparate in vivo environments. Signature-tag transposon mutagenesis screening of a 1520-member library identified numerous S. aureus genetic loci affecting growth and survival in four complementary animal infection models including mouse abscess, bacteraemia and wound and rabbit endocarditis. Of a total of 237 in vivo attenuated mutants identified by the murine models, less than 10% showed attenuation in all three models, emphasizing the advantage of screening in diverse disease environments. The largest gene class identified by these analyses encoded peptide and amino acid transporters, some of which were important for S. aureus survival in all animal infection models tested. The identification of staphylococcal loci affecting growth, persistence and virulence in multiple tissue environments provides insight into the complexities of human infection and on the molecular mechanisms that could be targeted by new antibacterial therapies.

Journal ArticleDOI
TL;DR: It is shown that sopB is located on a large DNA fragment unique to the Salmonella chromosome, which has features characteristic of ‘pathogenicity islands’ and, therefore, it was denoted SPI‐5 (Salmonella pathogenicity island‐5).
Abstract: Summary Salmonella spp. interact with ileal mucosa and disrupt normal intestinal function, which results in an acute inflammatory cell influx, fluid secretion and enteritis. We have recently characterized SopB, a novel secreted effector protein of Salmonella dublin, and presented evidence that SopB is translocated into eukaryotic cells via a sip-dependent pathway to promote fluid secretion and inflammatory responses. Here, we show that sopB is located on a large DNA fragment unique to the Salmonella chromosome. This locus is conserved in Salmonella and maps at approximately 20 centisome of the S. typhimurium chromosome. Sequence analysis revealed that this Salmonella-specific DNA fragment is flanked by DNA sequences with significant sequence similarity to the Escherichia coli K-12 genes, tRNA1 Ser (serT ) on one side and copS/copR on the other. Thus, this Salmonella-specific DNA fragment has features characteristic of ‘pathogenicity islands’ and, therefore, it was denoted SPI-5 (Salmonella pathogenicity island-5). SPI-5 was sequenced and was found to contain five novel genes, pipA, pipB, pipC, pipD (pathogenicity island-encoded proteins) and orfX, in addition to sopB. The effect of mutations in pipA, pipB and pipD on the induction of fluid secretion and an acute inflammatory cell influx was assessed in bovine ligated ileal loops. The effect of mutations in SPI-5-encoded genes on systemic salmonellosis was assessed in mice. The results of these experiments suggest that SPI-5-encoded genes contribute to enteric but not to systemic salmonellosis.