scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Plant Pathology in 2011"


Journal ArticleDOI
TL;DR: A short review on each virus of the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top10.
Abstract: Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.

842 citations


Journal ArticleDOI
TL;DR: It is demonstrated that genetic variability among wild and cultivated tomato lines affects the outcome of the interaction with two 'elite' biocontrol strains of T. atroviride and T. harzianum, and the ability of the plant to benefit from this symbiotic-like interaction can be genetically improved.
Abstract: SUMMARY Rhizosphere-competent fungi of the genus Trichoderma are widely used as biofertilizers and biopesticides in commercial formulates because of the multiple beneficial effects on plant growth and disease resistance. In this work, we demonstrate that genetic variability among wild and cultivated tomato lines affects the outcome of the interaction with two ‘elite’ biocontrol strains of T. atroviride and T. harzianum.The beneficial response, which included enhanced growth and systemic resistance againstBotrytis cinerea,was clearly evident for some,but not all, the tested lines.At least in one case (line M82), treatment with the biocontrol agents had no effect or was even detrimental. Expression studies on defence-related genes suggested that the fungus is able to trigger, in the responsive lines, a long-lasting up-regulation of the salicylic acid pathway in the absence of a pathogen,possibly activating a priming mechanism in the plant. Consequently, infection with B. cinerea on plants pretreated with Trichoderma is followed by enhanced activation of jasmonate-responsive genes, eventually boosting systemic resistance to the pathogen in a plant genotype-dependent manner. Our data indicate that, at least in tomato, the Trichoderma induced systemic resistance mechanism is much more complex than considered so far, and the ability of the plant to benefit from this symbiotic-like interaction can be genetically improved.

282 citations


Journal ArticleDOI
TL;DR: The fungal pathogen Mycosphaerella fijiensis causes black leaf streak disease (BLSD; aka black Sigatoka leaf spot) on the majority of edible banana cultivars grown worldwide and has a genome sequence that has revealed a wealth of gene sequences and molecular markers to be utilized in functional and population biology studies.
Abstract: SUMMARY Background: Banana (Musa spp.) is grown throughout the tropical and subtropical regions of the world.The fruits are a key staple food in many developing countries and a source of income for subsistence farmers. Bananas are also a major, multibilliondollar export commodity for consumption primarily in developed countries, where few banana cultivars are grown. The fungal pathogen Mycosphaerella fijiensis causes black leaf streak disease (BLSD; aka black Sigatoka leaf spot) on the majority of edible banana cultivars grown worldwide.The fact that most of these cultivars are sterile and unsuitable for the breeding of resistant lines necessitates the extensive use of fungicides as the primary means of disease control. BLSD is a significant threat to the food security of resource-poor populations who cannot afford fungicides, and increases the environmental and health hazards where large-acreage monocultures of banana (Cavendish subgroup, AAA genome) are grown for export. Taxonomy: Mycosphaerella fijiensis M. Morelet is a sexual, heterothallic fungus having Pseudocercospora fijiensis (M. Morelet) Deighton as the anamorph stage. It is a haploid, hemibiotrophic ascomycete within the class Dothideomycetes, order Capnodiales and family Mycosphaerellaceae. Its taxonomic placement is based on DNA phylogeny, morphological analyses and cultural characteristics. Disease symptoms and host range:Mycosphaerella fijiensis is a leaf pathogen that causes reddish-brown streaks running parallel to the leaf veins, which aggregate to form larger, darkbrown to black compound streaks.These streaks eventually form fusiform or elliptical lesions that coalesce, form a water-soaked border with a yellow halo and,eventually,merge to cause extensive leaf necrosis. The disease does not kill the plants immediately, but weakens them by decreasing the photosynthetic capacity of leaves, causing a reduction in the quantity and quality of fruit, and inducing the premature ripening of fruit harvested from infected plants. Although Musa spp. are the primary hosts of M. fijiensis, the ornamental plant Heliconia psittacorum has been reported as an alternative host. New opportunities: Several valuable tools and resources have been developed to overcome some of the challenges of studying this host‐pathogen system. These include a DNAmediated fungal transformation system and the ability to conduct targeted gene disruptions, reliable quantitative plant bioassays,diagnostic probes to detect and differentiate M. fijiensis from related pathogens and to distinguish strains of different mating types, and a genome sequence that has revealed a wealth of gene sequences and molecular markers to be utilized in functional and population biology studies.

190 citations


Journal ArticleDOI
TL;DR: A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight.
Abstract: SUMMARY Burkholderia glumae causes bacterial panicle blight of rice, which is an increasingly important disease problem in global rice production. Toxoflavin and lipase are known to be major virulence factors of this pathogen, and their production is dependent on the TofI/TofR quorum-sensing system, which is mediated by N-octanoyl homoserine lactone. Flagellar biogenesis and a type III secretion system are also required for full virulence of B. glumae. Bacterial panicle blight is thought to be caused by seed-borne B. glumae; however, its disease cycle is not fully understood. In spite of its economic importance, neither effective control measures for bacterial panicle blight nor rice varieties showing complete resistance to the disease are currently available. A better understanding of the molecular mechanisms underlying B. glumae virulence and of the rice defence mechanisms against the pathogen would lead to the development of better methods of disease control for bacterial panicle blight. Taxonomy:Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Burkholderiaceae; Burkholderia. Microbiological properties: Gram-negative, capsulated, motile, lophotrichous flagella, pectolytic. Disease symptoms: Aborted seed, empty grains as a result of failure of grain filling, brown spots on panicles, seedling rot. Disease control: Seed sterilization, planting partially resistant lines (no completely resistant line is available). Known virulence factors: Toxoflavin, lipase, type III effectors.

183 citations


Journal ArticleDOI
TL;DR: This paper used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type pea (Pisum sativum) er1 plants and showed that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea.
Abstract: Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea.

168 citations


Journal ArticleDOI
TL;DR: Recent information from the literature is assembled that describes both forms of this important pathogen and includes reports describing the host-pathogen interaction with barley, and preliminary findings from a genome sequence survey are included.
Abstract: Pyrenophora teres, causal agent of net blotch of barley, exists in two forms, designated P. teres f. teres and P. teres f. maculata, which induce net form net blotch (NFNB) and spot form net blotch (SFNB), respectively. Significantly more work has been performed on the net form than on the spot form although recent activity in spot form research has increased because of epidemics of SFNB in barley-producing regions. Genetic studies have demonstrated that NFNB resistance in barley is present in both dominant and recessive forms, and that resistance/susceptibility to both forms can be conferred by major genes, although minor quantitative trait loci have also been identified. Early work on the virulence of the pathogen showed toxin effector production to be important in disease induction by both forms of pathogen. Since then, several laboratories have investigated effectors of virulence and avirulence, and both forms are complex in their interaction with the host. Here, we assemble recent information from the literature that describes both forms of this important pathogen and includes reports describing the host-pathogen interaction with barley. We also include preliminary findings from a genome sequence survey.Taxonomy: Pyrenophora teres Drechs. Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycete; Order Pleosporales; Family Pleosporaceae; Genus Pyrenophora, form teres and form maculata.Identification: To date, no clear morphological or life cycle differences between the two forms of P. teres have been identified, and therefore they are described collectively. Towards the end of the growing season, the fungus produces dark, globosely shaped pseudothecia, about 1-2 mm in diameter, on barley. Ascospores measuring 18-28 μm × 43-61 μm are light brown and ellipsoidal and often have three to four transverse septa and one or two longitudinal septa in the median cells. Conidiophores usually arise singly or in groups of two or three and are lightly swollen at the base. Conidia measuring 30-174 μm × 15-23 μm are smoothly cylindrical and straight, round at both ends, subhyaline to yellowish brown, often with four to six pseudosepta. Morphologically, P. teres f. teres and P. teres f. maculata are indistinguishable.Host range: Comprehensive work on the host range of P. teres f. teres has been performed; however, little information on the host range of P. teres f. maculata is available. Hordeum vulgare and H. vulgare ssp. spontaneum are considered to be the primary hosts for P. teres. However, natural infection by P. teres has been observed in other wild Hordeum species and related species from the genera Bromus, Avena and Triticum, including H. marinum, H. murinum, H. brachyantherum, H. distichon, H. hystrix, B. diandrus, A. fatua, A. sativa and T. aestivum (Shipton ., 1973, Rev. Plant Pathol. 52:269-290). In artificial inoculation experiments under field conditions, P. teres f. teres has been shown to infect a wide range of gramineous species in the genera Agropyron, Brachypodium, Elymus, Cynodon, Deschampsia, Hordelymus and Stipa (Brown et al., 1993, Plant Dis. 77:942-947). Additionally, 43 gramineous species were used in a growth chamber study and at least one of the P. teres f. teres isolates used was able to infect 28 of the 43 species tested. However, of these 28 species, 14 exhibited weak type 1 or 2 reactions on the NFNB 1-10 scale (Tekauz, 1985). These reaction types are small pin-point lesions and could possibly be interpreted as nonhost reactions. In addition, the P. teres f. teres host range was investigated under field conditions by artificially inoculating 95 gramineous species with naturally infected barley straw. Pyrenophora teres f. teres was re-isolated from 65 of the species when infected leaves of adult plants were incubated on nutrient agar plates; however, other than Hordeum species, only two of the 65 host species exhibited moderately susceptible or susceptible field reaction types, with most species showing small dark necrotic lesions indicative of a highly resistant response to P. teres f. teres. Although these wild species have the potential to be alternative hosts, the high level of resistance identified for most of the species makes their role as a source of primary inoculum questionable.Disease symptoms: Two types of symptom are caused by P. teres. These are net-type lesions caused by P. teres f. teres and spot-type lesions caused by P. teres f. maculata. The net-like symptom, for which the disease was originally named, has characteristic narrow, dark-brown, longitudinal and transverse striations on infected leaves. The spot form symptom consists of dark-brown, circular to elliptical lesions surrounded by a chlorotic or necrotic halo of varying width.

158 citations


Journal ArticleDOI
TL;DR: A redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated, and two polyketide synthase (PKS) encoding genes, BcPKS6 and B cPKS9, that are up-regulated during tomato leaf infection are identified.
Abstract: The grey mould fungus Botrytis cinerea produces two major phytotoxins, the sesquiterpene botrydial, for which the biosynthesis gene cluster has been characterized previously, and the polyketide botcinic acid. We have identified two polyketide synthase (PKS) encoding genes, BcPKS6 and BcPKS9, that are up-regulated during tomato leaf infection. Gene inactivation and analysis of the secondary metabolite spectra of several independent mutants demonstrated that both BcPKS6 and BcPKS9 are key enzymes for botcinic acid biosynthesis. We showed that BcPKS6 and BcPKS9 genes, renamed BcBOA6 and BcBO9 (for B. cinerea botcinic acid biosynthesis), are located at different genomic loci, each being adjacent to other putative botcinic acid biosynthetic genes, named BcBOA1 to BcBOA17. Putative orthologues of BcBOA genes are present in the closely related fungus Sclerotinia sclerotiorum, but the cluster organization is not conserved between the two species. As for the botrydial biosynthesis genes, the expression of BcBOA genes is co-regulated by the Gα subunit BCG1 during both in vitro and in planta growth. The loss of botcinic acid production does not affect virulence on bean and tomato leaves. However, double mutants that do not produce botcinic acid or botrydial (bcpks6Δbcbot2Δ) exhibit markedly reduced virulence. Hence, a redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated.

157 citations


Journal ArticleDOI
TL;DR: The supposition that effectors from V. inaequalis act as suppressors of plant defence is supported by the ability of the pathogen to penetrate the cuticle and differentiate into large pseudoparenchymatous structures, termed stromata, in the subcuticular space without the initiation of an effective plant defence response.
Abstract: SUMMARY The fungus Venturia inaequalis infects members of the Maloideae, and causes the disease apple scab, the most important disease of apple worldwide. The early elucidation of the gene-for-gene relationship between V. inaequalis and its host Malus has intrigued plant pathologists ever since, with the identification of 17 resistance (R)–avirulence (Avr) gene pairings. The Avr gene products are presumably a subset of the total effector arsenal of V. inaequalis (predominantly proteins secreted in planta assumed to facilitate infection). The supposition that effectors from V. inaequalis act as suppressors of plant defence is supported by the ability of the pathogen to penetrate the cuticle and differentiate into large pseudoparenchymatous structures, termed stromata, in the subcuticular space, without the initiation of an effective plant defence response. If effectors can be identified that are essential for pathogenicity, the corresponding R genes will be durable and would add significant value to breeding programmes. An R gene cluster in Malus has been cloned, but no V. inaequalis effectors have been characterized at the molecular level. However, the identification of effectors is likely to be facilitated by the resolution of the whole genome sequence of V. inaequalis. Taxonomy: Teleomorph: Venturia inaequalis Cooke (Wint.); Kingdom Fungi; Phylum Ascomycota; Subphylum Euascomycota; Class Dothideomycetes; Family Venturiaceae; genus Venturia; species inaequalis. Anamorph: Fusicladium pomi (Fr.) Lind or Spilocaea pomi (Fr.). Life cycle:V. inaequalis is a hemibiotroph and overwinters as pseudothecia (sexual fruiting bodies) following a phase of saprobic growth in fallen leaf tissues. The primary inoculum consists of ascospores, which germinate and penetrate the cuticle. Stromata are formed above the epidermal cells but do not penetrate them. Cell wall-degrading enzymes are only produced late in the infection cycle, raising the as yet unanswered question as to how V. inaequalis gains nutrients from the host. Conidia (secondary inoculum) arise from the upper surface of the stromata, and are produced throughout the growing season, initiating multiple rounds of infection. Venturia inaequalis as a model pathogen of a woody host:V. inaequalis can be cultured and is amenable to crossing in vitro, enabling map-based cloning strategies. It can be transformed readily, and functional analyses can be conducted by gene silencing. Expressed sequence tag collections are available to aid in gene identification. These will be complemented by the whole genome sequence, which, in turn, will contribute to the comparative analysis of different races of V. inaequalis and plant pathogens within the Dothideomycetes.

151 citations


Journal ArticleDOI
TL;DR: Fundamental differences in the mechanisms of infection by beet-cyst and root-knot nematodes differentially regulate PR protein production and mobilization within susceptible host plants are suggested.
Abstract: The expression pattern of pathogenesis-related genes PR-1 to PR-5 was examined in the roots and leaves of Arabidopsis thaliana plants on infection with beet-cyst (Heterodera schachtii) and root-knot (Meloidogyne incognita) nematodes. During H. schachtii parasitism of Arabidopsis, the expression of PR-1, PR-2 and PR-5, which are considered to be markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was induced in both roots and leaves of infected plants. In addition, the expression of PR-3 and PR-4, which are used as markers for jasmonic acid (JA)-dependent SAR, was not altered in roots, but in the leaves of H. schachtii-infected plants, the expression PR-3 was induced, whereas the expression of PR-4 was down-regulated. During M. incognita infection of Arabidopsis, the expression of PR-1, PR-2 and PR-5 was highly induced in roots, as was PR-3 to a lesser extent, but the expression of PR-4 was not altered, indicating that infection with M. incognita activated both SA- and JA-dependent SAR in roots. However, all PRgenes examined (PR-1 to PR-5) were down-regulated in the leaves of M. incognita-infected plants, suggesting the suppression of both SA- and JA-dependent SAR. Furthermore, constitutive expression of a single PR in Arabidopsis altered the transcription patterns of other PR genes, and the over-expression of PR-1 reduced successful infection by both H. schachtii and M. incognita, whereas the over-expression of PR-3 reduced host susceptibility to M. incognita but had no effect on H. schachtii parasitism. The results suggest that fundamental differences in the mechanisms of infection by beet-cyst and root-knot nematodes differentially regulate PR protein production and mobilization within susceptible host plants.

149 citations


Journal ArticleDOI
TL;DR: The depth of the research will depend on a clear understanding of where the different propagules of Armillaria attack a root system, which of the pathogen's diverse biolymer-degrading enzymes and secondary metabolites facilitate infection, and how the course of infection differs between resistant and susceptible hosts.
Abstract: SUMMARY Armillaria root disease affects fruit and nut crops, timber trees and ornamentals in boreal, temperate and tropical regions of the world. The causal pathogens are members of the genus Armillaria (Basidiomycota, Physalacriaceae). This review summarizes the state of knowledge and highlights recent advances in Armillaria research. Taxonomy:Armillaria includes more than 40 morphological species. However, the identification and delineation of species on the basis of morphological characters are problematic, resulting in many species being undetected. Implementation of the biological species' concept and DNA sequence comparisons in the contemporary taxonomy of Armillaria have led to the discovery of a number of new species that are not linked to described morphological species. Host range:Armillaria exhibits a range of symbioses with both plants and fungi. As plant pathogens, Armillaria species have broad host ranges, infecting mostly woody species. Armillaria can also colonize orchids Galeola and Gastrodia but, in this case, the fungus is the host and the plant is the parasite. Similar to its contrasting relationships with plants, Armillaria acts as either host or parasite in its interactions with other fungi. Disease control: Recent research on post-infection controls has revealed promising alternatives to the former pre-plant eradication attempts with soil fumigants, which are now being regulated more heavily or banned outright because of their negative effects on the environment. New study tools for genetic manipulation of the pathogen and characterization of the molecular basis of the host response will greatly advance the development of resistant rootstocks in a new stage of research. The depth of the research, regardless of whether traditional or genomic approaches are used, will depend on a clear understanding of where the different propagules of Armillaria attack a root system, which of the pathogen's diverse biolymer-degrading enzymes and secondary metabolites facilitate infection, and how the course of infection differs between resistant and susceptible hosts.

137 citations


Journal ArticleDOI
TL;DR: This review summarizes the current knowledge of taxonomy, disease development, virulence, pathogenicity and control of Ps.
Abstract: SUMMARY Pseudoperonospora cubensis [(Berkeley & M. A. Curtis) Rostovzev],thecausalagentofcucurbitdownymildew,isresponsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.Although downy mildew has been a major issue in Europe since the mid-1980s, in the USA, downy mildew on cucumber has been successfully controlled for many years through host resistance. However, since the 2004

Journal ArticleDOI
TL;DR: This is the first demonstration of RNAi-mediated resistance to CBSD and protection across very distant isolates (more than 25% in nucleotide sequence) belonging to two different species: Cassava brown streak virus and Cassava Brown streak Uganda virus.
Abstract: Cassava brown streak disease (CBSD) is emerging as one of the most important viral diseases of cassava (Manihot esculenta) and is considered today as the biggest threat to cassava cultivation in East Africa. The disease is caused by isolates of at least two phylogenetically distinct species of single-stranded RNA viruses belonging to the family Potyviridae, genus Ipomovirus. The two species are present predominantly in the coastal lowland [Cassava brown streak virus (CBSV); Tanzania and Mozambique] and highland [Cassava brown streak Uganda virus (CBSUV); Lake Victoria Basin, Uganda, Kenya and Malawi] in East Africa. In this study, we demonstrate that CBSD can be efficiently controlled using RNA interference (RNAi). Three RNAi constructs targeting the highland species were generated, consisting of the full-length (FL; 894 nucleotides), 397-nucleotide N-terminal and 491-nucleotide C-terminal portions of the coat protein (CP) gene of a Ugandan isolate of CBSUV (CBSUV-[UG:Nam:04]), and expressed constitutively in Nicotiana benthamiana. After challenge with CBSUV-[UG:Nam:04], plants homozygous for FL-CP showed the highest resistance, followed by the N-terminal and C-terminal lines with similar resistance. In the case of FL, approximately 85% of the transgenic plant lines produced were completely resistant. Some transgenic lines were also challenged with six distinct isolates representing both species: CBSV and CBSUV. In addition to nearly complete resistance to the homologous virus, two FL plant lines showed 100% resistance and two C-terminal lines expressed 50–100% resistance, whereas the N-terminal lines succumbed to the nonhomologous CBSV isolates. Northern blotting revealed a positive correlation between the level of transgene-specific small interfering RNAs detected in transgenic plants and the level of virus resistance. This is the first demonstration of RNAi-mediated resistance to CBSD and protection across very distant isolates (more than 25% in nucleotide sequence) belonging to two different species: Cassava brown streak virus and Cassava brown streak Uganda virus.

Journal ArticleDOI
TL;DR: This Mycosphaerella graminicola pathogen profile covers recent advances in the knowledge of this ascomycete fungus and of the disease it causes, septoria tritici blotch of wheat, which has high economic importance and widespread global impact on wheat production.
Abstract: SUMMARY This Mycosphaerella graminicola pathogen profile covers recent advances in the knowledge of this ascomycete fungus and of the disease it causes, septoria tritici blotch of wheat. Research on this pathogen has accelerated since publication of a previous pathogen profile in this journal in 2002. Septoria tritici blotch continues to have high economic importance and widespread global impact on wheat production. Taxonomy:Mycosphaerella graminicola (Fuckel) J. Schrot. In Cohn (anamorph: Septoria tritici Roberge in Desmaz.). Kingdom Fungi, Phylum Ascomycota, Class Loculoascomycetes (filamentous ascomycetes), Order Dothideales, Genus Mycosphaerella, Species graminicola. Host range: Bread and durum wheat (Triticum aestivum L. and T. turgidum ssp. durum L.). Disease symptoms: Initially leaves develop a chlorotic flecking, which is followed by the development of necrotic lesions which contain brown–black pycnidia. Necrosis causes a reduction in photosynthetic capacity and therefore affects grain yield. Disease control: The disease is primarily controlled by a combination of resistant cultivars and fungicides. Rapid advances in disease control, especially in resistance breeding, are opening up new opportunities for the management of the disease. Useful websites:http://genome.jgi-psf.org/Mycgr3/Mycgr3.home.html.

Journal ArticleDOI
TL;DR: Recent developments and insights in the flax-flax rust pathosystem are discussed and their implications for both long-term co-evolutionary dynamics in natural settings, as well as short-termCo-evolved dynamics in agro-ecosystems are discussed.
Abstract: Plant-pathogen co-evolutionary selection processes are continuous, complex and occur across many spatial and temporal scales. Comprehensive studies of the flax-flax rust pathosystem have led to the postulation of the gene-for-gene model, a genetic paradigm describing recognition events between host disease resistance proteins and pathogen effector proteins. The identification of directly interacting fungal effector proteins and plant disease resistance proteins in this pathosystem has facilitated the study of both the physical nature of these interactions and the evolutionary forces that have resulted in a molecular arms race between these organisms. The flax-flax rust pathosystem has also been detailed on the scale of interacting populations, and the integration of molecular- and population-scale datasets represents a unique opportunity to further our understanding of many poorly understood facets of host-pathogen dynamics. In this article, we discuss recent developments and insights in the flax-flax rust pathosystem and their implications for both long-term co-evolutionary dynamics in natural settings, as well as short-term co-evolutionary dynamics in agro-ecosystems.

Journal ArticleDOI
TL;DR: Cloning of two CLAVATA3/ESR (CLE)-like genes from the beet cyst nematode Heterodera schachtii shows that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism, and suggests that this class of CLEs may be subject to complex endogenous regulation.
Abstract: In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 µm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 µm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism.

Journal ArticleDOI
TL;DR: These findings suggest that signalling interactions occur between PTI and ETI at very early stages and/or that FLS2 forms a PTI signalling complex, some components of which are guarded by R proteins.
Abstract: SUMMARY Plants possess two distinct types of immune receptor. The first type, pattern recognition receptors (PRRs), recognizes microbe-associated molecular patterns (MAMPs) and initiates pattern-triggered immunity (PTI) on recognition. FLS2 is a PRR, which recognizes a part of bacterial flagellin. The second type, resistance (R) proteins, recognizes pathogen effectors and initiates effector-triggered immunity (ETI) on recognition. RPM1, RPS2 and RPS5 are R proteins. Here, we provide evidence that FLS2 is physically associated with all three R proteins. Our findings suggest that signalling interactions occur between PTI and ETI at very early stages and/or that FLS2 forms a PTI signalling complex, some components of which are guarded by R proteins.

Journal ArticleDOI
TL;DR: P. stewartii has become the microbial paradigm for QS control of gene expression by both repression and activation via a QS regulator that binds DNA in the absence and dissociates in the presence of the signal ligand.
Abstract: SUMMARY Pantoea stewartii subsp. stewartii is a Gram-negative enteric bacterium that primarily infects sweet corn. Studies of this bacterium have provided useful insight into how xylem-dwelling bacteria establish themselves and incite disease in their hosts. Pantoea stewartii subsp. stewartii is a remarkable bacterial system for laboratory studies because of its relative ease of propagation and genetic manipulation, and the fact that it appears to employ a minimal number of pathogenicity mechanisms. In addition, P. stewartii subsp. stewartii produces copious amounts of its quorum sensing (QS) signal, acyl-homoserine lactone (AHL), making it an excellent organism for studying QS-controlled gene regulation in a plant-pathogenic bacterium. In fact, P. stewartii subsp. stewartii has become the microbial paradigm for QS control of gene expression by both repression and activation via a QS regulator that binds DNA in the absence and dissociates in the presence of the signal ligand. Moreover, P. stewartii subsp. stewartii is a member of the Enterobacteriaceae, and lessons learned from its interaction with plants may be extrapolated to other plant-associated enterics, such as Erwinia, Dickeya and Pectobacterium spp., or enteric human pathogens associated with plants, such as Escherichia coli and Salmonella spp. Taxonomy: Bacteria; Gammaproteobacteria; family Enterobacteriaceae; genus Pantoea; species stewartii (Mergaert et al., 1993). Microbiological properties: Gram-negative, motile, yellow pigmented, mucoid, facultative anaerobe. Host range:Pantoea stewartii subsp. stewartii (Smith, 1898) Dye causes Stewart's wilt of corn (Zea mays). Early-maturing sweet corn varieties and some elite inbred maize lines are particularly susceptible. Disease symptoms: There are two major phases of Stewart's wilt disease: (i) wilt and (ii) leaf blight. The wilt phase occurs when young seedlings are infected with P. stewartii subsp. stewartii (Fig. 1A). Water-soaked lesions first appear on the young expanding leaves and, later, seedlings may become severely wilted (Fig. 1B). The plants usually die when infected at the seedling stage. The leaf blight phase occurs when mature plants are infected (Fig. 1C). The bacteria enter the xylem and cause long linear yellow–grey lesions with a wavy margin that run parallel to the leaf veins. These lesions later turn necrotic and dark in colour. The leaf blight phase is most apparent after tasselling and does not generally cause death of the plant. In addition, the bacteria can sometimes break out of the xylem and cause pith rot in mature sweet corn plants. In resistant varieties, lesions are usually limited to only a few centimetres depending on the level of resistance of the particular hybrid (Claflin, 2000; Pataky, 2003). Figure 1. Disease symptoms associated with Stewart's wilt of sweet corn. (A) The seedling wilt phase of the disease which occurs when young plants are systemically infected. (B) Leaf lesions run parallel to the leaf veins. They begin as water-soaked areas that turn into long, pale-green to yellow gray streaks with wavy margins. (C) The leaf blight phase of the disease. This phase occurs when plants are infected after the seedling stage. Images used with permission from Pataky (2003, 2004). Download figure to PowerPoint Useful websites:http://www.apsnet.org/publications/apsnetfeatures/Pages/StewartsWilt.aspx

Journal ArticleDOI
TL;DR: Evidence is presented that invertases are important factors during gall development, most probably in supplying sugars to the pathogen, and root-specific repression of invertase activity could be used as a tool to reduce clubroot symptoms.
Abstract: Clubroot disease of Brassicaceae is caused by an obligate biotrophic protist, Plasmodiophora brassicae. During root gall development, a strong sink for assimilates is developed. Among other genes involved in sucrose and starch synthesis and degradation, the increased expression of invertases has been observed in a microarray experiment, and invertase and invertase inhibitor expression was confirmed using promoter::GUS lines of Arabidopsis thaliana. A functional approach demonstrates that invertases are important for gall development. Different transgenic lines expressing an invertase inhibitor under the control of two root-specific promoters, Pyk10 and CrypticT80, which results in the reduction of invertase activity, showed clearly reduced clubroot symptoms in root tissue with highest promoter expression, whereas hypocotyl galls developed normally. These results present the first evidence that invertases are important factors during gall development, most probably in supplying sugars to the pathogen. In addition, root-specific repression of invertase activity could be used as a tool to reduce clubroot symptoms.

Journal ArticleDOI
TL;DR: This study demonstrates that at least one of these two ipomoviruses, CBSUV, can be efficiently controlled using RNA interference (RNAi) technology in cassava.
Abstract: SUMMARY Cassava brown streak disease (CBSD), caused by Cassava brown streak Uganda virus (CBSUV) and Cassava brown streak virus (CBSV), is of new epidemic importance to cassava (Manihot esculenta Crantz) production in East Africa, and an emerging threat to the crop in Central and West Africa. This study demonstrates that at least one of these two ipomoviruses, CBSUV, can be efficiently controlled using RNA interference (RNAi) technology in cassava. An RNAi construct targeting the near full-length coat protein (FL-CP) of CBSUV was expressed constitutively as a hairpin construct in cassava. Transgenic cassava lines expressing small interfering RNAs (siRNAs) against this sequence showed 100% resistance to CBSUV across replicated graft inoculation experiments. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed the presence of CBSUV in leaves and some tuberous roots from challenged controls, but not in the same tissues from transgenic plants. This is the first demonstration of RNAi-mediated resistance to the ipomovirus CBSUV in cassava.

Journal ArticleDOI
TL;DR: Five genes that have been demonstrated to be targets of TAS3-derived ta-siRNAs were up-regulated in RSV-infected rice, and further experiments showed that p2 was a silencing suppressor.
Abstract: A rice cDNA library was screened by a galactosidase 4 (Gal4)-based yeast two-hybrid system with Rice stripe virus (RSV) p2 as bait. The results revealed that RSV p2 interacted with a rice protein exhibiting a high degree of identity with Arabidopsis thaliana suppressor of gene silencing 3 (AtSGS3). The interaction was confirmed by bimolecular fluorescence complementation assay. SGS3 has been shown to be involved in sense transgene-induced RNA silencing and in the biogenesis of trans-acting small interfering RNAs (ta-siRNAs), possibly functioning as a cofactor of RNA-dependent RNA polymerase 6 (RDR6). Given the intimate relationships between virus and RNA silencing, further experiments were conducted to show that p2 was a silencing suppressor. In addition, p2 enhanced the accumulation and pathogenicity of Potato virus X in Nicotiana benthamiana. Five genes that have been demonstrated to be targets of TAS3-derived ta-siRNAs were up-regulated in RSV-infected rice. The implications of these findings are discussed.

Journal ArticleDOI
TL;DR: The molecular genetics of the interaction between P. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions.
Abstract: Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. Taxonomy: Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30 °C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. Host range: Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. Disease symptoms: Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23 °C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. Epidemiology: Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. Disease control: Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. Useful websites: Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.

Journal ArticleDOI
TL;DR: The data suggest that NPR1 and some NPR1-like proteins are sensitive to the plant hormone SA, altering some of their biochemical capabilities to enable stimulus-dependent gene expression.
Abstract: NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1; also known as NIM1) is a master regulator of systemic acquired resistance (SAR). SAR is induced by salicylic acid (SA), leading to the expression of PATHOGENESIS-RELATED (PR) genes. Current evidence suggests that NPR1 is part of a transcription complex tethered to activation sequence-1 (as-1)-like cis-acting elements in PR-1 gene promoters through TGA transcription factors, and that SA-dependent PR-1 gene expression is regulated by NIM1-INTERACTING (NIMIN) proteins. In Arabidopsis, NPR1 is active only after SA induction. Regulation of Arabidopsis NPR1 activity has been proposed to comprise cysteine-156 (Cys-156), mediating SA-induced cytoplasmic oligomer-nuclear monomer exchange, and Cys-521 and Cys-529, mediating SA-dependent transcriptional activation. Tobacco NPR1 does not harbour these residues. To understand the function of tobacco NPR1, we analysed its biochemical capabilities in a heterologous system: yeast. Tobacco NPR1 differs from Arabidopsis NPR1 in its subcellular localization and its transactivation potential. Yet, both tobacco and Arabidopsis NPR1, as well as tobacco NIM1-like1, alter some of their biochemical activities in response to SA. Whereas the addition of SA to yeast growth medium induces transcriptional activity in tobacco NPR1, its interaction with NIMIN2-type proteins is suppressed. The effects of SA are specific, sensitive and occur coordinately. They are abolished completely by mutation of the arginine residue within the invariable penta-amino acid motif LENRV, as present in the nonfunctional Arabidopsis nim1-4 allele. Furthermore, NPR1 proteins with the LENRV domain coincidently harbour a broad and strongly conserved NIMIN1/NIMIN2 binding site. Our data suggest that NPR1 and some NPR1-like proteins are sensitive to the plant hormone SA, altering some of their biochemical capabilities to enable stimulus-dependent gene expression. The sensitivity of NPR1 proteins to SA, together with their differential interaction with diverse NIMIN proteins, seems a plausible molecular basis for the timely and coordinated activation of PR genes during SAR.

Journal ArticleDOI
TL;DR: The understanding of the evolutionary relationships among the YopJ superfamily members provides an excellent opportunity to address this question and to investigate the functions and virulence strategies of a diverse type III effector family in animal and plant hosts.
Abstract: SUMMARY Bacterial pathogens employ the type III secretion system to secrete and translocate effector proteins into their hosts. The primary function of these effector proteins is believed to be the suppression of host defence responses or innate immunity. However, some effector proteins may be recognized by the host and consequently trigger a targeted immune response. The YopJ/HopZ/AvrRxv family of bacterial effector proteins is a widely distributed and evolutionarily diverse family, found in both animal and plant pathogens, as well as plant symbionts. How can an effector family effectively promote the virulence of pathogens on hosts from two separate kingdoms? Our understanding of the evolutionary relationships among the YopJ superfamily members provides an excellent opportunity to address this question and to investigate the functions and virulence strategies of a diverse type III effector family in animal and plant hosts. In this work, we briefly review the literature on YopJ, the archetypal member from Yersinia pestis, and discuss members of the superfamily in species of Pseudomonas, Xanthomonas, Ralstonia and Rhizobium. We review the molecular and cellular functions, if known, of the YopJ homologues in plants, and highlight the diversity of responses in different plant species, with a particular focus on the Pseudomonas syringae HopZ family. The YopJ superfamily provides an excellent foundation for the study of effector diversification in the context of wide-ranging, co-evolutionary interactions.

Journal ArticleDOI
TL;DR: It is suggested that a structurally intact LPS is critical for survival in the phyllosphere and for the virulence of Xcc.
Abstract: Xanthomonas citri ssp. citri (Xcc) causes citrus canker, one of the most economically damaging diseases affecting citrus worldwide. Biofilm formation is important for the pathogen to survive epiphytically in planta prior to the induction of canker symptoms. In this study, two EZ-Tn5 transposon mutants of Xcc strain 306, affected in biofilm formation, were isolated; subsequent analyses led to the identification of a novel gene locus XAC3596 (designated as wxacO), encoding a putative transmembrane protein, and the rfbC gene, encoding a truncated O-antigen biosynthesis protein. Sodium dodecylsulphate-polyacrylamide gel electrophoresis revealed that lipopolysaccharide (LPS) biosynthesis was affected in both wxacO and rfbC mutants. The wxacO mutant was impaired in the formation of a structured biofilm on glass or host plant leaves, as shown in confocal laser scanning microscopy analysis of strains containing a plasmid expressing the green fluorescent protein. Both wxacO and rfbC mutants were more sensitive than the wild-type strain to different environmental stresses, and more susceptible to the antimicrobial peptide polymyxin B. The two mutants were attenuated in swimming motility, but not in flagellar formation. The mutants also showed reduced virulence and decreased growth on host leaves when spray inoculated. The affected phenotypes of the wxacO and rfbC mutants were complemented to wild-type levels by the intact wxacO and rfbC genes, respectively. This report identifies a new gene influencing LPS production by Xcc. In addition, our results suggest that a structurally intact LPS is critical for survival in the phyllosphere and for the virulence of Xcc.

Journal ArticleDOI
TL;DR: A new plant-oomycete pathosystem in which the broad host range pathogen Phytophthora parasitica was demonstrated to be capable of interacting compatibly with the model plant Arabidopsis thaliana is established, expanding the model systems investigating oomycete-plant interactions, and will facilitate a full understanding of Phytophile biology and pathology.
Abstract: Oomycete pathogens cause severe damage to a wide range of agriculturally important crops and natural ecosystems. They represent a unique group of plant pathogens that are evolutionarily distant from true fungi. In this study, we established a new plant-oomycete pathosystem in which the broad host range pathogen Phytophthora parasitica was demonstrated to be capable of interacting compatibly with the model plant Arabidopsis thaliana. Water-soaked lesions developed on leaves within 3 days and numerous sporangia formed within 5 days post-inoculation of P. parasitica zoospores. Cytological characterization showed that P. parasitica developed appressoria-like swellings and penetrated epidermal cells directly and preferably at the junction between anticlinal host cell walls. Multiple haustoria-like structures formed in both epidermal cells and mesophyll cells 1 day post-inoculation of zoospores. Pathogenicity assays of 25 A. thaliana ecotypes with six P. parasitica strains indicated the presence of a natural variation in host specificity between A. thaliana and P. parasitica. Most ecotypes were highly susceptible to P. parasitica strains Pp014, Pp016 and Pp025, but resistant to strains Pp008 and Pp009, with the frequent appearance of cell wall deposition and active defence response-based cell necrosis. Gene expression and comparative transcriptomic analysis further confirmed the compatible interaction by the identification of up-regulated genes in A. thaliana which were characteristic of biotic stress. The established A. thaliana-P. parasitica pathosystem expands the model systems investigating oomycete-plant interactions, and will facilitate a full understanding of Phytophthora biology and pathology.

Journal ArticleDOI
TL;DR: An important role of the AaSLT2 MAP kinase-mediated signalling pathway, regulating diverse physiological, developmental and pathological functions, in the tangerine pathotype of A. alternata is highlighted.
Abstract: SUMMARY Fungi respond and adapt to different environmental stimuli via signal transduction systems We determined the function of a yeast SLT2 mitogen-activated protein (MAP) kinase homologue (AaSLT2) in Alternaria alternata, the fungal pathogen of citrus Analysis of the loss-of-function mutant indicated that AaSLT2 is required for the production of a host-selective toxin, and is crucial for fungal pathogenicity Moreover, the A alternata slt2 mutants displayed hypersensitivity to cell wall-degrading enzymes and chemicals such as Calcofluor white and Congo red This implicates an important role of AaSLT2 in the maintenance of cell wall integrity in A alternata The A alternata slt2 mutants were also hypersensitive to a heteroaromatic compound, 2-chloro-5-hydroxypyridine, and a plant growth regulator, 2,3,5-triiodobenzoic acid Developmentally, the AaSLT2 gene product was shown to be critical for conidial formation and hyphal elongation Compared with the wild-type, the mutants produced fewer but slightly larger conidia with less transverse septae The mutants also accumulated lower levels of melanin and chitin Unlike the wild-type progenitor, the A alternata slt2 mutants produced globose, swollen hyphae that did not elongate in a straight radial direction All defective phenotypes in the mutant were restored by transformation and expression of a wild-type copy of AaSLT2 under the control of its endogenous promoter This study highlights an important role of the AaSLT2 MAP kinase-mediated signalling pathway, regulating diverse physiological, developmental and pathological functions, in the tangerine pathotype of A alternata

Journal ArticleDOI
TL;DR: It is found that oligomerization is mainly mediated by a region near the C-terminus of the protein, and that the same region is also essential for membrane pore formation, and phosphatidic acid binding seems to be mediated by two regions separate in the primary structure.
Abstract: Harpin HrpZ is one of the most abundant proteins secreted through the pathogenesis-associated type III secretion system of the plant pathogen Pseudomonas syringae. HrpZ shows membrane-binding and pore-forming activities in vitro, suggesting that it could be targeted to the host cell plasma membrane. We studied the native molecular forms of HrpZ and found that it forms dimers and higher order oligomers. Lipid binding by HrpZ was tested with 15 different membrane lipids, with HrpZ interacting only with phosphatidic acid. Pore formation by HrpZ in artificial lipid vesicles was found to be dependent on the presence of phosphatidic acid. In addition, HrpZ was able to form pores in vesicles prepared from Arabidopsis thaliana plasma membrane, providing evidence for the suggested target of HrpZ in the host. To map the functions associated with HrpZ, we constructed a comprehensive series of deletions in the hrpZ gene derived from P. syringae pv. phaseolicola, and studied the mutant proteins. We found that oligomerization is mainly mediated by a region near the C-terminus of the protein, and that the same region is also essential for membrane pore formation. Phosphatidic acid binding seems to be mediated by two regions separate in the primary structure. Tobacco, a nonhost plant, recognizes, as a defence elicitor, a 24-amino-acid HrpZ fragment which resides in the region indispensable for the oligomerization and pore formation functions of HrpZ.

Journal ArticleDOI
TL;DR: Global results indicate that secondary metabolism, mainly phenylpropanoids, and ethylene play important roles in the induction of resistance in citrus fruit.
Abstract: Penicillium spp. are the major postharvest pathogens of citrus fruit in Mediterranean climatic regions. The induction of natural resistance constitutes one of the most promising alternatives to avoid the environmental contamination and health problems caused by chemical fungicides. To understand the bases of the induction of resistance in citrus fruit against Penicillium digitatum, we have used a 12k citrus cDNA microarray to study transcriptional changes in the outer and inner parts of the peel (flavedo and albedo, respectively) of elicited fruits. The elicitor treatment led to an over-representation of biological processes associated with secondary metabolism, mainly phenylpropanoids and cellular amino acid biosynthesis and methionine metabolism, and the down-regulation of genes related to biotic and abiotic stresses. Among phenylpropanoids, we detected the over-expression of a large subset of genes important for the synthesis of flavonoids, coumarins and lignin, especially in the internal tissue. Furthermore, these genes and those of ethylene biosynthesis showed the highest induction. The involvement of both phenylpropanoid and ethylene pathways was confirmed by examining changes in gene expression and ethylene production in elicited citrus fruit. Therefore, global results indicate that secondary metabolism, mainly phenylpropanoids, and ethylene play important roles in the induction of resistance in citrus fruit.

Journal ArticleDOI
TL;DR: A highly efficacious resistance quantitative trait locus was localized on linkage group 12 of the ornamental cultivar 'Evereste' and two genes were recognized in silico as the two most probable fire blight resistance genes showing homology with the Pto/Prf complex in tomato.
Abstract: SUMMARY Fire blight is the most destructive bacterial disease affecting apple (Malus×domestica) worldwide. So far, no resistance gene against fire blight has been characterized in apple, despite several resistance regions having been identified. A highly efficacious resistance quantitative trait locus (QTL) was localized on linkage group 12 (LG12) of the ornamental cultivar ‘Evereste’. A marker previously reported to be closely linked to this resistance was used to perform a chromosome landing. A bacterial artificial chromosome (BAC) clone of 189 kb carrying the fire blight resistance QTL was isolated and sequenced. New microsatellite markers were developed, and the genomic region containing the resistance locus was limited to 78 kb. A cluster of eight genes with homologies to already known resistance gene structures to bacterial diseases was identified and the corresponding gene transcription was verified. From this cluster, two genes were recognized in silico as the two most probable fire blight resistance genes showing homology with the Pto/Prf complex in tomato.

Journal ArticleDOI
TL;DR: This article summarizes aspects related to the infection process, colonization of the host and molecular mechanisms employed by tobacco plants in resistance against R. solani in tobacco.
Abstract: SUMMARY Rhizoctonia solani Kuhn is a soil-borne fungal pathogen that causes disease in a wide range of plants worldwide. Strains of the fungus are traditionally grouped into genetically isolated anastomosis groups (AGs) based on hyphal anastomosis reactions. This article summarizes aspects related to the infection process, colonization of the host and molecular mechanisms employed by tobacco plants in resistance against R. solani diseases. Taxonomy: Teleomorph: Thanatephorus cucumeris (Frank) Donk; anamorph: Rhizoctonia solani Kuhn; Kingdom Fungi; Phylum Basidiomycota; Class Agaricomycetes; Order Cantharellales; Family Ceratobasidiaceae; genus Thanatephorus. Identification: Somatic hyphae in culture and hyphae colonizing a substrate or host are first hyaline, then buff to dark brown in colour when aging. Hyphae tend to form at right angles at branching points that are usually constricted. Cells lack clamp connections, but possess a complex dolipore septum with continuous parenthesomes and are multinucleate. Hyphae are variable in size, ranging from 3 to 17 µm in diameter. Although the fungus does not produce any conidial structure, ellipsoid to globose, barrel-shaped cells, named monilioid cells, 10–20 µm wide, can be produced in chains and can give rise to sclerotia. Sclerotia are irregularly shaped, up to 8–10 mm in diameter and light to dark brown in colour. Disease symptoms: Symptoms in tobacco depend on AG as well as on the tissue being colonized. Rhizoctonia solani AG-2-2 and AG-3 infect tobacco seedlings and cause damping off and stem rot. Rhizoctonia solani AG-3 causes ‘sore shin’ and ‘target spot’ in mature tobacco plants. In general, water-soaked lesions start on leaves and extend up the stem. Stem lesions vary in colour from brown to black. During late stages, diseased leaves are easily separated from the plant because of severe wilting. In seed beds, disease areas are typically in the form of circular to irregular patches of poorly growing, yellowish and/or stunted seedlings. Resistance: Knowledge is scarce regarding the mechanisms associated with resistance to R. solani in tobacco. However, recent evidence suggests a complex response that involves several constitutive factors, as well as induced barriers controlled by multiple defence pathways. Management: This fungus can survive for many years in soil as mycelium, and also by producing sclerotia, which makes the management of the disease using conventional means very difficult. Integrated pest management has been most successful; it includes timely fungicide applications, crop rotation and attention to soil moisture levels. Recent developments in biocontrol may provide other tools to control R. solani in tobacco.