scispace - formally typeset
Search or ask a question

Showing papers in "Radiocarbon in 2020"


Journal ArticleDOI
TL;DR: In this article, the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP.
Abstract: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.

2,800 citations


Journal ArticleDOI
TL;DR: Marine20 as mentioned in this paper is an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radioccarbon from 0 −55 cal kBP and serves as a baseline for regional oceanic variation.
Abstract: The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/.

690 citations


Journal ArticleDOI
TL;DR: In this article, the Southern Hemisphere curve (SHCal20) is proposed to estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older than the Northern Hemisphere offset, based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data.
Abstract: Early researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0–55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140–0, 3520–3453, 3608–3590 and 13,140–11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older.

535 citations


Journal ArticleDOI
TL;DR: The recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration are addressed through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.
Abstract: To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices This paper describes the new methodology together with the tailored modifications required to integrate the various datasets For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve

66 citations


Journal ArticleDOI
TL;DR: The Centre for Isotope Research (CIO) at the University of Groningen has operated a radiocarbon (14C) dating laboratory for almost 70 years as mentioned in this paper.
Abstract: The Centre for Isotope Research (CIO) at the University of Groningen has operated a radiocarbon (14C) dating laboratory for almost 70 years. In 2017, the CIO received a major upgrade, which involved the relocation of the laboratory to new purpose-built premises, and the installation of a MICADAS accelerator mass spectrometer. This period of transition provides an opportunity to update the laboratory’s routine procedures. This article addresses all of the processes and quality checks the CIO has in place for registering, tracking and pretreating samples for radiocarbon dating. Complementary updates relating to radioisotope measurement and uncertainty propagation will be provided in other forthcoming publications. Here, the intention is to relay all the practical information regarding the chemical preparation of samples, and to provide a concise explanation as to why each step is deemed necessary.

49 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss advances and developments that have led to improvements in the updated curves and highlight some issues of relevance for the general readership, such as the dating of Santorini eruption and also some consequences of the new curve for Paleolithic archaeology.
Abstract: The curves recommended for calibrating radiocarbon (14C) dates into absolute dates have been updated. For calibrating atmospheric samples from the Northern Hemisphere, the new curve is called IntCal20. This is accompanied by associated curves SHCal20 for the Southern Hemisphere, and Marine20 for marine samples. In this “companion article” we discuss advances and developments that have led to improvements in the updated curves and highlight some issues of relevance for the general readership. In particular the dendrochronological based part of the curve has seen a significant increase in data, with single-year resolution for certain time ranges, extending back to 13,910 calBP. Beyond the tree rings, the new curve is based upon an updated combination of marine corals, speleothems, macrofossils, and varved sediments and now reaches back to 55,000 calBP. Alongside these data advances, we have developed a new, bespoke statistical curve construction methodology to allow better incorporation of the diverse constituent records and produce a more robust curve with uncertainties. Combined, these data and methodological advances offer the potential for significant new insight into our past. We discuss some implications for the user, such as the dating of the Santorini eruption and also some consequences of the new curve for Paleolithic archaeology.

44 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present results of marine reservoir age simulations enabling this resolution, applying the LSG ocean general circulation model forced with various climatic background conditions and with atmospheric radiocarbon changes according to the Hulu Cave speleothem record.
Abstract: Beyond ~13.9 cal kBP, the IntCal20 radiocarbon (14C) calibration curve is based upon combining data across a range of different archives including corals and planktic foraminifera. In order to reliably incorporate such marine data into an atmospheric curve, we need to resolve these records into their constituent atmospheric signal and marine reservoir age. We present results of marine reservoir age simulations enabling this resolution, applying the LSG ocean general circulation model forced with various climatic background conditions and with atmospheric radiocarbon changes according to the Hulu Cave speleothem record. Simulating the spatiotemporal evolution of reservoir ages between 54,000 and 10,700 cal BP, we find reservoir ages between 500 and 1400 yr in the low- and mid-latitudes, but also more than 3000 yr in the polar seas. Our results are broadly in agreement with available marine radiocarbon reconstructions, with the caveat that continental margins, marginal seas, or tropical lagoons are not properly resolved in our coarse-resolution model.

42 citations


Journal ArticleDOI
TL;DR: In this paper, an updated varve-based chronology has also been published for the 2006 core from Lake Suigetsu (SG06) based on extended microscopic analysis of the sediments and improved algorithms for interpolation.
Abstract: Terrestrial plant macrofossils from the sedimentary record of Lake Suigetsu, Japan, provide the only quasi-continuous direct atmospheric record of radiocarbon (14C) covering the last 50 ka cal BP (Bronk Ramsey et al. 2012). Since then, new high precision data have become available on U-Th dated speleothems from Hulu Cave China, covering the same time range (Cheng et al. 2018). In addition, an updated varve-based chronology has also been published for the 2006 core from Lake Suigetsu (SG06) based on extended microscopic analysis of the sediments and improved algorithms for interpolation (Schlolaut et al. 2018). Here we reanalyze the radiocarbon dataset from Suigetsu based on the new varve counting information and the constraints imposed by the speleothem data. This enables the new information on the calendar age scale of the Suigetsu dataset to be used in the construction of the consensus IntCal calibration curve. Comparison of the speleothem and plant macrofossil records provides insight into the mechanisms underlying the incorporation of carbon into different types of record and the relative strengths of different types of archive for calibration purposes.

32 citations


Journal ArticleDOI
TL;DR: In 2018, Pearson et al. as mentioned in this paper published a new sequence of annual radiocarbon (14C) data derived from oak (Quercus sp.) trees from Northern Ireland and bristlecone pine (Pinus longaeva) from North America across the period 1700-1500 BC.
Abstract: In 2018 Pearson et al. published a new sequence of annual radiocarbon (14C) data derived from oak (Quercus sp.) trees from Northern Ireland and bristlecone pine (Pinus longaeva) from North America across the period 1700–1500 BC. The study indicated that the more highly resolved shape of an annually based calibration dataset could improve the accuracy of 14C calibration during this period. This finding had implications for the controversial dating of the eruption of Thera in the Eastern Mediterranean. To test for interlaboratory variation and improve the robustness of the annual dataset for calibration purposes, we have generated a replicate sequence from the same Irish oaks at ETH Zurich. These data are compatible with the Irish oak 14C dataset previously produced at the University of Arizona and are used (along with additional data) to examine inter-tree and interlaboratory variation in multiyear annual 14C time-series. The results raise questions about regional 14C offsets at different scales and demonstrate the potential of annually resolved 14C for refining subdecadal and larger scale features for calibration, solar reconstruction, and multiproxy synchronization.

25 citations


Journal ArticleDOI
TL;DR: In this article, the principles of cathodoluminescence (CL) and laser-induced fluorescence (LIF) for the identification of geologic calcium carbonate (CaCO3) aggregates and unreacted lime lumps within the particle size fraction selected for carbon recovery.
Abstract: Accurate radiocarbon (14C) dating of lime mortars requires a thorough mineralogical characterization of binders in order to verify the presence of carbon-bearing contaminants. In the last 20 years, cathodoluminescence (CL) has been widely used for the identification of geologic calcium carbonate (CaCO3) aggregates and unreacted lime lumps within the particle size fraction selected for carbon recovery. These components are major sources of older and younger carbon, respectively, and should be removed to obtain accurate age determinations. More recently, laser-induced fluorescence (LIF) has provided another means of investigating the preservation state and composition of CaCO3 binders. Considered the growing interest of the mortar dating community in the latest advancements of these analytical methods, here we review the principles of CL and LIF of CaCO3, their instrument setup, and their application to the characterization of ancient lime mortars used for 14C dating. In addition, we provide examples of SEM-CL and LIF analyses using high-resolution instrumentation, we discuss current issues and propose future lines of research.

24 citations


Journal ArticleDOI
TL;DR: The Cariaco-Hulu calendar and radiocarbon (14C) chronologies were updated in this article to account for missing sediment from a core break, eliminating age-depth anomalies that afflicted the earlier calendar ages.
Abstract: We present new updates to the calendar and radiocarbon (14C) chronologies for the Cariaco Basin, Venezuela. Calendar ages were generated by tuning abrupt climate shifts in Cariaco Basin sediments to those in speleothems from Hulu Cave. After the original Cariaco-Hulu calendar age model was published, Hulu Cave δ18O records have been augmented with increased temporal resolution and a greater number of U/Th dates. These updated Hulu Cave records provide increased accuracy as well as precision in the final Cariaco calendar age model. The depth scale for the Ocean Drilling Program Site 1002D sediment core, the primary source of samples for 14C dating, has been corrected to account for missing sediment from a core break, eliminating age-depth anomalies that afflicted the earlier calendar age models. Individual 14C dates for the Cariaco Basin remain unchanged from previous papers, although detailed comparisons of the Cariaco calibration dataset to those from Hulu Cave and Lake Suigetsu suggest that the Cariaco marine reservoir age may have shifted systematically during the past. We describe these recent changes to the Cariaco datasets and provide the data in a comprehensive format that will facilitate use by the community.

Journal ArticleDOI
TL;DR: In this article, the authors investigated quartz-based luminescence optical dating of Iron Age deposits at the archaeological site of Tell Damiyah in the Jordan valley, and concluded that the sediments of tell Damiyah are very suitable for luminecence dating.
Abstract: In this study, we investigate quartz-based luminescence optical dating of Iron Age deposits at the archaeological site of Tell Damiyah in the Jordan valley. Ten samples, taken from different occupation layers from two different excavation areas, proved to have good luminescence characteristics (fast-component dominated, dose recovery ratio 1.032 ± 0.010, n=24). The optical ages are completely consistent with both available 14 C ages and ages based on stylistic elements; it appears that this material was fully reset at deposition, although it is recognised that the agreement with age control is somewhat dependent on the assumed field water content of the samples. Further comparison with different OSL signals from feldspar, or investigations based on dose distributions from individual grains would be desirable to independently confirm the resetting of this material. It is concluded that the sediments of Tell Damiyah are very suitable for luminescence dating. Despite the relatively large associated age uncertainties of between 5 and 10%, OSL at tell sites has the potential to provide ages for material very difficult to date by conventional methods, and to identify reworked mixtures of older artifacts in a younger depositional setting.

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a protocol called Quality Dating (QD) implemented at ETH-Zurich to ensure reproducible and accurate high-precision 14C-dates.
Abstract: Advances in accelerator mass spectrometry have resulted in an unprecedented amount of new high-precision radiocarbon (14C) -dates, some of which will redefine the international 14C calibration curves (IntCal and SHCal). Often these datasets are unaccompanied by detailed quality insurances in place at the laboratory, questioning whether the 14C structure is real, a result of a laboratory variation or measurement-scatter. A handful of intercomparison studies attempt to elucidate laboratory offsets but may fail to identify measurement-scatter and are often financially constrained. Here we introduce a protocol, called Quality Dating, implemented at ETH-Zurich to ensure reproducible and accurate high-precision 14C-dates. The protocol highlights the importance of the continuous measurements and evaluation of blanks, standards, references and replicates. This protocol is tested on an absolutely dated German Late Glacial tree-ring chronology, part of which is intercompared with the Curt Engelhorn-Center for Archaeometry, Mannheim, Germany (CEZA). The combined dataset contains 170 highly resolved, highly precise 14C-dates that supplement three decadal dates spanning 280 cal. years in IntCal, and provides detailed 14C structure for this interval.

Journal ArticleDOI
TL;DR: A new facility for radiocarbon dating by accelerator mass spectrometry (AMS) was established in early 2015 at the Inter-University Accelerator Centre in New Delhi, India as discussed by the authors.
Abstract: A new facility for radiocarbon dating by accelerator mass spectrometry (AMS) was established in early 2015 at the Inter-University Accelerator Centre in New Delhi, India. The facility uses a 500 kV National Electrostatic Corporation (NEC) Pelletron accelerator for AMS measurements on graphite produced using the automated graphitization equipment (AGE) interfaced with an elemental analyzer and the carbonate handling system (CHS). A precision of better than 1‰ in the ratio of 14C/12C for the modern carbon sample and the background level of 1 × 10–15 from dead carbon sample has been achieved. This is the first dedicated accelerator of India only for AMS activities. This AMS system has the capabilities to perform 10Be and 26Al measurements as well.

Journal ArticleDOI
TL;DR: In this article, a batch of unknown samples is measured with accompanying samples (primary and secondary standards and blanks), which give a powerful set of data to control the quality of each measurement.
Abstract: Quality control procedures have been developed at the Laboratoire de Mesure du Carbone 14 (LMC14) national laboratory throughout the years of operation. Routine procedures are applied to sample preparation depending on their composition and their size. The tuning of the ARTEMIS AMS facility, hosted by the LMC14 laboratory, uses an accurate procedure. A batch of unknown samples is measured with accompanying samples (primary and secondary standards and blanks), which give a powerful set of data to control the quality of each measurement. A homemade database has been created to store the sample information and study the evolution of the accompanying samples. The LMC14 laboratory participated in the Sixth International Radiocarbon Intercomparison, SIRI. The results are presented here, with statistical tests to assess the quality of the preparations and measurements done at the LMC14 national laboratory. To obtain a reliable radiocarbon (14C) age by AMS, 1 mg of sample is required in routine analysis. Recently, the LMC14 developed a new procedure dedicated to microsamples, allowing the size of samples to be reduced and contributing to opening 14C dating to materials that were previously unreachable. This new procedure has been successfully tested on valuable Cultural Heritage samples: lead white mural paintings.

Journal ArticleDOI
TL;DR: In this article, the authors quantify such phenomenon by modeling discontinuities in burial practices through kernel density analysis of 1428 radiocarbon (14C) dates from 311 archaeological sites located in Belgium from the Mesolithic to the Middle Ages.
Abstract: The adoption of a new funerary ritual with all its social and cognitive meanings is of great importance to understanding social transformations of past societies. The first known occurrence of cremation in the territory corresponding to modern Belgium dates back to the Mesolithic period. From the end of the Neolithic onward, the practice of cremation was characterized by periods in which this rite was predominant and periods of contractions, defined by a decrease in the use of this funerary ritual. This paper aims to quantify such phenomenon for the first time by modeling discontinuities in burial practices through kernel density analysis of 1428 radiocarbon (14C) dates from 311 archaeological sites located in Belgium from the Mesolithic to the Middle Ages. Despite possible taphonomic and sampling biases, the results highlight the existence of periods with a large uptake of cremation rite followed by periods of contractions; such discontinuities took place in correlation with changes in the socio-economical structure of local communities, as, for example, during the later Middle Bronze Age and at the end of the Roman Period.

Journal ArticleDOI
TL;DR: In this article, the Barbiers data were first averaged at the same decadal resolution as the kauri record, and then matched with the 14C record based on kauri trees from New Zealand.
Abstract: Subfossil trees with their annual rings constitute the most accurate and precise archive to calibrate the radiocarbon (14C) method. The Holocene part of the IntCal curve is based on tree-ring chronologies, absolutely dated by dendrochronological matching. For the Northern Hemisphere, the absolute curve starts at 12,325 cal BP. For the early part of the Younger Dryas (YD) climatic event (≈ 12,850–11,650 cal BP), there are only a few floating dendrochronological sequences, mainly from Switzerland and France. We present new 14C results from subfossil trees (Pinus sylvestris L.) collected from the Barbiers site (southeast French Alps). The dendrochronological series covers 416 years, corresponding to the onset of the YD period. In order to date our sequence, we matched it with the 14C record based on kauri trees from New Zealand. The Barbiers data were first averaged at the same decadal resolution as the kauri record. Statistical comparison of the different averaging options and matching techniques enables dating the Barbiers sequence to 13,008–12,594 ±10 cal BP, which thus includes the boundary between the Allerod and YD events. The new Barbiers record allows to calculate the 14C inter-hemispheric gradient (14C-IHG) during the period overlapping the kauri sequence. For the optimal dating option, the mean 14C-IHG is 37 yr with a standard deviation (SD) of 21 yr based on 43 decadal estimations (−6‰ with SD of 2‰). The 14C-IHG record exhibits minimal values, down to zero, between 12,960–12,840 cal BP. Excluding these minima leads to an average 14C-IHG of 45 yr with a SD of 14 yr based on 33 decadal values, in agreement with observations for the last two millennia. The Barbiers record suggests a 14C-IHG increase between the end of the Allerod period (IHG of 37 yr with SD of 14 yr) and the early part of the YD (IHG of 48 yr with SD of 14 yr), which is compatible with previously reported drop of deep-water convection in the North-Atlantic and the associated increase in wind-driven upwelling in the Southern Ocean.

Journal ArticleDOI
TL;DR: In this article, the authors presented a new set of radiocarbon (14C) dates for the Late Gravettian period in ECE and propose that this period began and ended earlier than previously suggested.
Abstract: The Middle Upper Palaeolithic (MUP) in eastern Central Europe (ECE) comprises three variants of Gravettian culture: Early Gravettian, Pavlovian, and Late Gravettian. While Early Gravettian and Pavlovian are merely located in Lower Austria and Moravia, the Late Gravettian occupations occurred over the entire territory of ECE. Compared to the number of sites the radiocarbon dating and the absolute chronology of the Late Gravettian is rather poor. The results presented here bring a new set of radiocarbon (14C) dates for the Late Gravettian period in ECE and propose that this period began and ended earlier than previously suggested.

Journal ArticleDOI
TL;DR: The radiocarbon intercomparison on single-year tree-ring samples presented in this paper shows that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even beyond what is possible with decay counting, even though they require a thousand times less wood.
Abstract: The radiocarbon (C) calibration curve so far contains annually resolved data only for a short period of time. With accelerator mass spectrometry (AMS) matching the precision of decay counting, it is now possible to efficiently produce large datasets of annual resolution for calibration purposes using small amounts of wood. The radiocarbon intercomparison on single-year tree-ring samples presented here is the first to investigate specifically possible offsets between AMS laboratories at high precision. The results show that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even goes beyond what is possible with decay counting, even though they require a thousand times less wood. It also shows that not all AMS laboratories always produce results that are consistent with their stated uncertainties. The long-term benefits of studies of this kind are more accurate radiocarbon measurements with, in the future, better quantified uncertainties.

Journal ArticleDOI
TL;DR: In this paper, a SWOT analysis of Northern Hemisphere tree-ring datasets included in IntCal20 is performed to evaluate their strategic fit with the demands of archaeological users, in order to maximize the utility of 14C dating in archaeology and safeguard its reputation in the discipline.
Abstract: We undertook a strengths, weaknesses, opportunities, and threats (SWOT) analysis of Northern Hemisphere tree-ring datasets included in IntCal20 in order to evaluate their strategic fit with the demands of archaeological users. Case studies on wiggle-matching single tree rings from timbers in historic buildings and Bayesian modeling of series of results on archaeological samples from Neolithic long barrows in central-southern England exemplify the archaeological implications that arise when using IntCal20. The SWOT analysis provides an opportunity to think strategically about future radiocarbon (14C) calibration so as to maximize the utility of 14C dating in archaeology and safeguard its reputation in the discipline.

Journal ArticleDOI
TL;DR: The most recent workshop on mortar dating as discussed by the authors, which closely followed the publication of an extensive round robin-exercise involving several laboratories, was an opportunity to review the history and challenges of mortar dating methods and procedures currently in use.
Abstract: The most recent workshop on mortar dating (25–27 Oct. 2018, Bordeaux, Montaigne University, France), which closely followed the publication of an extensive round robin-exercise involving several laboratories, was an opportunity to review the history and challenges of mortar dating methods and procedures currently in use. This review stems from the keynote lectures presented at the meeting, and wishes to summarize recent results, present trends, and future challenges. Three major areas are brought into focus (1) radiocarbon (14C) dating of complex mortars: can we assess the chances of successful dating?, (2) 14C dating of archaeological carbonate materials: difficulties, new directions and applications, and (3) single grain optically stimulated luminescence (OSL) dating of mortars in architectural archaeology: the current state of the art. This paper reflects the material presented by the authors and discussed at the workshop.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated 13,567 charred plant seeds and 19 radiocarbon (14C) dates obtained from 41 late prehistoric sites in the upper Wei River valley.
Abstract: In order to assess late prehistoric human responses to climate change in the Western Loess Plateau (WLP), we investigated 13,567 charred plant seeds and 19 radiocarbon (14C) dates obtained from 41 late prehistoric sites in the upper Wei River valley. Based on these new dating results as well as their cultural attributes, these sites could be confidently divided into four chronological phases (Phase 1: Late Yangshao and Majiayao culture; Phase 2: Qijia culture; Phases 3 and 4: Siwa culture) but a significant gap was identified at ca. 3600–3000 cal yr BP in this region. Comparison of this interval to high-resolution paleoclimate records from Tianchi Lake suggests it could be attributed to the dramatic drop in temperature at this time. Accordingly, archaeobotanical evidence with a refined chronology shows the adoption of cold-tolerant subsistence cereal grains such as barley on the NETP (Northeast Tibetan Plateau). Drawing from various lines of knowledge (chronology, palaeoclimate, archaeobotany, and archaeology), it is reasonable to conclude that, even when confronting a similar magnitude of climate change, local human societies could vary tremendously. Different subsistence strategies were brought in by the trans-Eurasia culture exchange of prehistoric times.

Journal ArticleDOI
TL;DR: This paper used radiocarbon (C-14) to build absolute chronologies and reconstruct ocean ventilation over the last 40 ka. Sample size requirements have restricted C-14 measurements in marine cores with sample size requirements.
Abstract: Radiocarbon (C-14) can be used to build absolute chronologies and reconstruct ocean ventilation over the last 40 ka. Sample size requirements have restricted C-14 measurements in marine cores with ...

Journal ArticleDOI
TL;DR: In this article, the authors show that the IntCal20 calibration record largely supports the new IntCal 20 calibration record and discuss how floating tree-ring sequences on ice-core time scales agree with the new calibration curve.
Abstract: Connecting calendar ages to radiocarbon (14C) ages, i.e. constructing a calibration curve, requires 14C samples that represent, or are closely connected to, atmospheric 14C values and that can also be independently dated. In addition to these data, there is information that can serve as independent tests of the calibration curve. For example, information from ice core radionuclide data cannot be directly incorporated into the calibration curve construction as it delivers less direct information on the 14C age–calendar age relationship but it can provide tests of the quality of the calibration curve. Furthermore, ice core ages on 14C-dated volcanic eruptions provide key information on the agreement of ice core and radiocarbon time scales. Due to their scarcity such data would have little impact if directly incorporated into the calibration curve. However, these serve as important “anchor points” in time for independently testing the calibration curve and/or ice-core time scales. Here we will show that such information largely supports the new IntCal20 calibration record. Furthermore, we discuss how floating tree-ring sequences on ice-core time scales agree with the new calibration curve. For the period around 40,000 years ago we discuss unresolved differences between ice core 10Be and 14C records that are possibly related to our limited understanding of carbon cycle influences on the atmospheric 14C concentration during the last glacial period. Finally, we review the results on the time scale comparison between the Greenland ice-core time scale (GICC05) and IntCal20 that effectively allow a direct comparison of 14C-dated records with the Greenland ice core data.

Journal ArticleDOI
TL;DR: In this paper, the authors used radiocarbon marine reservoir offsets (ΔR) from eight archaeological sites, ranging in age from 350 cal BP to 3000 cal BP, and compared to coral datasets from the east Australian coastline.
Abstract: Holocene climate change in the South Pacific is of major interest to archaeologists and Quaternary researchers. Regional surface ocean radiocarbon (14C) values are an established proxy for studying changing oceanographic and climatic conditions. Unfortunately, radiocarbon variability in the marine environment over the period of specific importance to human colonization of the remote Pacific islands—the last 3500 years—has been poorly studied. In order to build robust and accurate archaeological chronologies using shell, it is important to rectify this. In this paper, radiocarbon marine reservoir offsets (ΔR) are presented from eight archaeological sites, ranging in age from 350 cal BP to 3000 cal BP, and compared to coral datasets from the east Australian coastline. The results indicate that a significant decrease in the South Pacific Gyre ΔR occurred between 2600 and 2250 cal BP, most likely caused by changes in ocean circulation and climate. Accurately recording the timing of variability in reservoir offset is critical to untangling changes in society that took place in the Pacific, in particular, the development of Ancestral Polynesian Society.

Journal ArticleDOI
TL;DR: The early Holocene in North Africa remains a poorly known period, documented unequally by region as discussed by the authors, but most were excavated decades ago without the controls and recording required for modern interpretation.
Abstract: The early Holocene in North Africa remains a poorly known period, documented unequally by region. Eastern Algeria and Tunisia have the greatest number of deposits, but most were excavated decades ago without the controls and recording required for modern interpretation. The chronological framework is based on radiocarbon (14 C) dates that are also old, for the most part. Recent work on Mesolithic lithic industries of Western Europe has enabled us to revive the hypothesis of the existence of contacts between the northern and southern shores of the western Mediterranean at least by the 6th millennium cal BC. A collective research program was conducted in 2016-2017 to test this hypothesis with a particular focus on documenting the technological traditions in the lithic industry and situating them precisely in time. We have 46 new radiocarbon dates that were recently carried out on previously excavated Algerian sites, some of which contain several levels, allowing the construction of Bayesian models. These new measures reinforce the hypothesis of contacts between Europe and Africa by demonstrating the contemporaneity of similar technological processes. Above all, they make it possible to accurately refine the chronology of the main cultural entities of the Maghreb at the beginning of the Holocene.

Journal ArticleDOI
TL;DR: In this paper, the fraction modern carbon (F14C) and the mass of procedural blanks introduced during the preparation procedures of lipid biomarkers (i.e. n-alkanoic acids) and lignin phenols were assessed.
Abstract: Compound-specific radiocarbon (14C) dating often requires working with small samples of < 100 µg carbon (µgC). This makes the radiocarbon dates of biomarker compounds very sensitive to biases caused by extraneous carbon of unknown composition, a procedural blank, which is introduced to the samples during the steps necessary to prepare a sample for radiocarbon analysis by accelerator mass spectrometry (i.e., isolating single compounds from a heterogeneous mixture, combustion, gas purification and graphitization). Reporting accurate radiocarbon dates thus requires a correction for the procedural blank. We present our approach to assess the fraction modern carbon (F14C) and the mass of the procedural blanks introduced during the preparation procedures of lipid biomarkers (i.e. n-alkanoic acids) and lignin phenols. We isolated differently sized aliquots (6–151 µgC) of n-alkanoic acids and lignin phenols obtained from standard materials with known F14C values. Each compound class was extracted from two standard materials (one fossil, one modern) and purified using the same procedures as for natural samples of unknown F14C. There is an inverse linear relationship between the measured F14C values of the processed aliquots and their mass, which suggests constant contamination during processing of individual samples. We use Bayesian methods to fit linear regression lines between F14C and 1/mass for the fossil and modern standards. The intersection points of these lines are used to infer F14Cblank and mblank and their associated uncertainties. We estimate 4.88 ± 0.69 μgC of procedural blank with F14C of 0.714 ± 0.077 for n-alkanoic acids, and 0.90 ± 0.23 μgC of procedural blank with F14C of 0.813 ± 0.155 for lignin phenols. These F14Cblank and mblank can be used to correct AMS results of lipid and lignin samples by isotopic mass balance. This method may serve as a standardized procedure for blank assessment in small-scale radiocarbon analysis.

Journal ArticleDOI
TL;DR: In this article, it was shown that these young carbonates dissolve rapidly in phosphoric acid and in many cases a reasonable 14C age can be read from 14C profiles in sequential dissolution if the measurements from initially formed carbon dioxide are disregarded.
Abstract: When sampling mortars for radiocarbon (14C) dating it is crucial to ensure that the sample has hardened rapidly relative the resolution of the dating method. Soft and porous lime mortars usually fulfill this criterion if the samples are taken from an uncovered surface from less than a few centimeters deep. However, hard, concrete-like mortars may be impermeable for carbon dioxide and even the outermost centimeters may still contain uncarbonated calcium hydroxide. These mortars may harden very slowly and contain carbonate that formed centuries or even millennia after the original building phase, and they can still be alkaline and capture modern 14C, causing younger 14C ages than the actual construction age. Another problem is reactivation of the binder carbonate if it has been partly decarbonated during a fire later on in its history. It will be shown that these young carbonates dissolve rapidly in phosphoric acid and in many cases a reasonable 14C age can be read from 14C profiles in sequential dissolution if the measurements from initially formed carbon dioxide are disregarded. However, if a mortar was made waterproof deliberately by adding crushed or ground tile, as in Roman cocciopesto mortars, it may be very difficult to get a conclusive dating.

Journal ArticleDOI
TL;DR: New radiocarbon (14 C) dates suggest a simultaneous appearance of two technologically and geographically distinct axe production practices in Neolithic Britain; igneous open-air quarries in Great Langdale, Cumbria, and from flint mines in southern England at ~4000-3700 cal BC as discussed by the authors.
Abstract: New radiocarbon ( 14 C) dates suggest a simultaneous appearance of two technologically and geographically distinct axe production practices in Neolithic Britain; igneous open-air quarries in Great Langdale, Cumbria, and from flint mines in southern England at ~4000–3700 cal BC. In light of the recent evidence that farming was introduced at this time by large-scale immigration from northwest Europe, and that expansion within Britain was extremely rapid, we argue that this synchronicity supports this speed of colonization and reflects a knowledge of complex extraction processes and associated exchange networks already possessed by the immigrant groups; long-range connections developed as colonization rapidly expanded. Although we can model the start of these new extraction activities, it remains difficult to estimate how long significant production activity lasted at these key sites given the nature of the record from which samples could be obtained.

Journal ArticleDOI
TL;DR: The Royal Institute for Cultural Heritage (RICH) radiocarbon (14C) laboratory in Brussels, Belgium has acquired experience for pretreating samples with 60 years of involvement in 14C dating, and the implementation of routine protocols as discussed by the authors.
Abstract: The Royal Institute for Cultural Heritage (RICH) radiocarbon (14C) laboratory in Brussels, Belgium, has acquired experience for pretreating samples with 60 years of involvement in 14C dating, and the implementation of routine protocols. These procedures as applied to wood, seeds, charred materials, bones, ivory, textiles (silk, wool, cotton, linen), paper, shells, cremated bones, mortars, lead carbonates, sediments, etc. are described in detail in this paper. They are evaluated against reference materials.