scispace - formally typeset
Search or ask a question

Showing papers in "Reproduction in 2015"


Journal ArticleDOI
TL;DR: There is not sufficient evidence in favor of any specific pharmacologic therapies to directly oppose inflammation in PCOS, and further studies are warranted to identify an adipokine that could serve as an indirect marker of adipocyte production in PCos, representing a reliable sign of metabolic alteration in this syndrome.
Abstract: Polycystic ovary syndrome (PCOS), a complex condition that affects women of reproductive age, is characterized by ovulatory dysfunction and androgen excess Women with PCOS present higher prevalence of obesity, central adiposity, and dyslipidemia, and face increased risk of type 2 diabetes PCOS is closely linked to functional derangements in adipose tissue Adipocytes seem to be prone to hypertrophy when exposed to androgen excess, as experienced by women with PCOS, and both adipose tissue hypertrophy and hyperandrogenism are related to insulin resistance Hypertrophic adipocytes are more susceptible to inflammation, apoptosis, fibrosis, and release of free fatty acids Disturbed secretion of adipokines may also impact the pathophysiology of PCOS through their influence on metabolism and on sex steroid secretion Chronic low-grade inflammation in PCOS is also related to hyperandrogenism and to the hypertrophy of adipocytes, causing compression phenomena in the stromal vessels, leading to adipose tissue hypoperfusion and altered secretion of cytokines Lifestyle changes are the first-line intervention for reducing metabolic risks in PCOS and the addition of an insulin-sensitizing drug might be required Nevertheless, there is not sufficient evidence in favor of any specific pharmacologic therapies to directly oppose inflammation Further studies are warranted to identify an adipokine that could serve as an indirect marker of adipocyte production in PCOS, representing a reliable sign of metabolic alteration in this syndrome

224 citations


Journal ArticleDOI
TL;DR: This review focuses on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways.
Abstract: Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.

216 citations


Journal ArticleDOI
TL;DR: A more comprehensive picture of the etiopathogenesis of idiopathic male infertility will only be achieved by a parallel investigation of the complex world of gene environmental interaction and epigenetics, which will provide an informative tool for NGS data interpretation.
Abstract: Male infertility is a multifactorial complex disease with highly heterogeneous phenotypic representation and in at least 15% of cases, this condition is related to known genetic disorders, including both chromosomal and single-gene alterations. In about 40% of primary testicular failure, the etiology remains unknown and a portion of them is likely to be caused by not yet identified genetic anomalies. During the last 10 years, the search for 'hidden' genetic factors was largely unsuccessful in identifying recurrent genetic factors with potential clinical application. The armamentarium of diagnostic tests has been implemented only by the screening for Y chromosome-linked gr/gr deletion in those populations for which consistent data with risk estimate are available. On the other hand, it is clearly demonstrated by both single nucleotide polymorphisms and comparative genomic hybridization arrays, that there is a rare variant burden (especially relevant concerning deletions) in men with impaired spermatogenesis. In the era of next generation sequencing (NGS), we expect to expand our diagnostic skills, since mutations in several hundred genes can potentially lead to infertility and each of them is likely responsible for only a small fraction of cases. In this regard, system biology, which allows revealing possible gene interactions and common biological pathways, will provide an informative tool for NGS data interpretation. Although these novel approaches will certainly help in discovering 'hidden' genetic factors, a more comprehensive picture of the etiopathogenesis of idiopathic male infertility will only be achieved by a parallel investigation of the complex world of gene environmental interaction and epigenetics.

159 citations


Journal ArticleDOI
TL;DR: The relationship between ageing and epigenetic modifications is discussed, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms.
Abstract: It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions, aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations. In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms.

128 citations


Journal ArticleDOI
TL;DR: The role of the androgen receptor (AR) in the regulation of female fertility and ovarian ageing has been investigated in a recent review as mentioned in this paper, which revealed the roles of AR-mediated actions in normal and pathological ovarian function.
Abstract: Androgens mediate their actions via the androgen receptor (AR), a member of the nuclear receptor superfamily. AR-mediated androgen action is essential in male reproductive development and function; however, only in the last decade has the suspected but unproven role for AR-mediated actions in female reproduction been firmly established. Deciphering the specific roles and precise pathways by which AR-mediated actions regulate ovarian function has been hindered by confusion on how to interpret results from pharmacological studies using androgens that can be converted into oestrogens, which exert actions via the oestrogen receptors. The generation and analysis of global and cell-specific female Ar knockout mouse models have deduced a role for AR-mediated actions in regulating ovarian function, maintaining female fertility, and have begun to unravel the mechanisms by which AR-mediated androgen actions regulate follicle health, development and ovulation. Furthermore, observational findings from human studies and animal models provide substantial evidence to support a role for AR-mediated effects not only in normal ovarian function but also in the development of the frequent ovarian pathological disorder, polycystic ovarian syndrome (PCOS). This review focuses on combining the findings from observational studies in humans, pharmacological studies and animal models to reveal the roles of AR-mediated actions in normal and pathological ovarian function. Together these findings will enable us to begin understanding the important roles of AR actions in the regulation of female fertility and ovarian ageing, as well as providing insights into the role of AR actions in the androgen-associated reproductive disorder PCOS.

117 citations


Journal ArticleDOI
TL;DR: This review summarizes and compares the present knowledge on the mechanisms regulating mammalian gonocyte and spermatogonial differentiation and proposes a strategy to better understand the molecular mechanisms regulating these processes.
Abstract: The production of spermatozoa relies on a pool of spermatogonial stem cells (SSCs), formed in infancy from the differentiation of their precursor cells, the gonocytes. Throughout adult life, SSCs will either self-renew or differentiate, in order to maintain a stem cell reserve while providing cells to the spermatogenic cycle. By contrast, gonocytes represent a transient and finite phase of development leading to the formation of SSCs or spermatogonia of the first spermatogenic wave. Gonocyte development involves phases of quiescence, cell proliferation, migration, and differentiation. Spermatogonia, on the other hand, remain located at the basement membrane of the seminiferous tubules throughout their successive phases of proliferation and differentiation. Apoptosis is an integral part of both developmental phases, allowing for the removal of defective cells and the maintenance of proper germ-Sertoli cell ratios. While gonocytes and spermatogonia mitosis are regulated by distinct factors, they both undergo differentiation in response to retinoic acid. In contrast to postpubertal spermatogenesis, the early steps of germ cell development have only recently attracted attention, unveiling genes and pathways regulating SSC self-renewal and proliferation. Yet, less is known on the mechanisms regulating differentiation. The processes leading from gonocytes to spermatogonia have been seldom investigated. While the formation of abnormal gonocytes or SSCs could lead to infertility, defective gonocyte differentiation might be at the origin of testicular germ cell tumors. Thus, it is important to better understand the molecular mechanisms regulating these processes. This review summarizes and compares the present knowledge on the mechanisms regulating mammalian gonocyte and spermatogonial differentiation.

114 citations


Journal ArticleDOI
TL;DR: An overview of the origins of the PAGs, a summary of PAG expression patterns, and their use as markers of pregnancy status are presented and speculations about their putative role(s) in pregnancy are presented.
Abstract: Pregnancy-associated glycoproteins (PAGs) are abundantly expressed products of the placenta of species within the Cetartiodactyla order (even-toed ungulates). They are restricted to this order and they are particularly numerous in the Bovidae. The PAGs exhibit a range of temporal and spatial expression patterns by the placental trophoblasts and probably represent a group of related proteins that perform a range of distinct functions in the epitheliochorial and synepitheliochorial placental forms. This review presents an overview of the origins of the PAGs, a summary of PAG expression patterns, and their use as markers of pregnancy status. Speculations about their putative role(s) in pregnancy are also presented.

104 citations


Journal ArticleDOI
TL;DR: A review of the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development can be found in this paper, where the authors highlight insights that have been gained through next-generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during pre-plantation.
Abstract: Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular, we highlight insights that have been gained through next-generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation.

98 citations


Journal ArticleDOI
TL;DR: The evidence for the involvement of stores in [Ca2 +]i signalling in mammalian (primarily human) sperm, the agonists that may activate these stores and their role in control of sperm function are considered, and a mechanism by which these different components of the sperm Ca2 +-signalling apparatus may interact to generate complex and spatially diverse signals is proposed.
Abstract: [Ca2 +]i signalling is a key regulatory mechanism in sperm function. In mammalian sperm the Ca2 +-permeable plasma membrane ion channel CatSper is central to [Ca2 +]i signalling, but there is good evidence that Ca2 + stored in intracellular organelles is also functionally important. Here we briefly review the current understanding of the diversity of Ca2 + stores and the mechanisms for the regulation of their activity. We then consider the evidence for the involvement of these stores in [Ca2 +]i signalling in mammalian (primarily human) sperm, the agonists that may activate these stores and their role in control of sperm function. Finally we consider the evidence that membrane Ca2 + channels and stored Ca2 + may play discrete roles in the regulation of sperm activities and propose a mechanism by which these different components of the sperm Ca2 +-signalling apparatus may interact to generate complex and spatially diverse [Ca2 +]i signals.

95 citations


Journal ArticleDOI
TL;DR: Hormonal regulation of WNT genes and expression of members of the WNT signaling network, including WNT ligands, frizzled receptors, and downstream signaling components that are expressed in the postnatal ovary at distinct stages of the estrous cycle suggest a crucial role in normal ovarian function.
Abstract: Wingless-type mouse mammary tumor virus integration site (WNT) signaling molecules are locally secreted glycoproteins that play important role in regulation of ovarian follicle maturation and steroid production. Components of the WNT signaling pathway have been demonstrated to impact reproductive functions, including embryonic development of the sex organs and regulation of follicle maturation controlling steroidogenesis in the postnatal ovary. Emerging evidence underscores the complexity of WNT signaling molecules in regulation of dynamic changes that occur in the ovary during the reproductive cycle. While disruption in the WNT signaling cascade has been recognized to have deleterious consequences to normal sexual development, more recent studies are beginning to highlight the importance of these molecules in adult ovarian function related to follicle development, corpus luteum formation, steroid production and fertility. Hormonal regulation of WNT genes and expression of members of the WNT signaling network, including WNT ligands, frizzled receptors, and downstream signaling components that are expressed in the postnatal ovary at distinct stages of the estrous cycle suggest a crucial role in normal ovarian function. Similarly, FSH stimulation of T-cell factor-dependent gene expression requires input from β-catenin, a lynchpin molecule in canonical WNT signaling, further indicating β-catenin participation in regulation of follicle maturation. This review will focus on the multiple functions of WNT signaling in folliculogenesis in the adult ovary.

84 citations


Journal ArticleDOI
TL;DR: The hypothesis that free and/or exosomal enJSRV act on the trophectoderm via TLR to induce the secretion of IFNT in a manner similar to that for innate immune responses of macrophages and plasmacytoid dendritic cells to viral pathogens is supported.
Abstract: Conceptus-endometrial communication during the peri-implantation period of pregnancy ensures establishment of pregnancy. We hypothesized that this dialog involves exosomes, ovine endogenous jaagsiekte retroviruses (enJSRV) and toll-like receptors (TLR) which regulate the secretion of interferon tau (IFNT), the pregnancy recognition signal in ruminants. First, exosomes isolated from uterine flushings from cyclic and pregnant ewes were analyzed for exosomal content and uterine expression of heat shock protein 70 (HSC70). Then, conceptus trophectoderm cells (oTr1) treated with different doses of exosomes were analyzed for the expression of genes involved in TLR-mediated cell signaling. The results revealed that exosomes contain mRNAs for enJSRV-ENV, HSC70, interleukins, and interferon (IFN)-regulatory factors. Exosomal content of enJSRV-ENV mRNA and protein decreased from days 10 and 12 to day 16 of gestation, and uterine expression of HSC70 increased in pregnant ewes compared with cyclic ewes. The oTr1 cells proliferated and secreted IFNT in a dose-dependent manner in response to exosomes from cyclic ewes. The expression of CD14, CD68, IRAK1, TRAF6, IRF6, and IRF7 mRNAs that are key to TLR-mediated expression of type 1 IFNs was significantly influenced by day of pregnancy. This study demonstrated that exosomes are liberated into the uterine lumen during the estrous cycle and early pregnancy; however, in pregnant ewes, exosomes stimulate trophectoderm cells to proliferate and secrete IFNT coordinately with regulation of TLR-mediated cell signaling. These results support our hypothesis that free and/or exosomal enJSRV act on the trophectoderm via TLR to induce the secretion of IFNT in a manner similar to that for innate immune responses of macrophages and plasmacytoid dendritic cells to viral pathogens.

Journal ArticleDOI
TL;DR: Light is shed on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.
Abstract: Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.

Journal ArticleDOI
TL;DR: Gene ontology analysis for molecular and cellular processes revealed new information about the metabolism, antioxidant defences and receptors of stallion spermatozoa, and several enzymes specific to β-oxidation of fatty acids were identified.
Abstract: Stallion spermatozoa continue to present scientific and clinical challenges with regard to the biological mechanisms responsible for their survival and function. In particular, deeper understanding of sperm energy metabolism, defence against oxidative damage and cell-cell interactions should improve fertility assessment and the application of advanced reproductive technologies in the equine species. In this study, we used highly sensitive LC-MS/MS technology and sequence database analysis to identify and characterise the proteome of Percoll-isolated ejaculated equine spermatozoa, with the aim of furthering our understanding of this cell's complex biological machinery. We were able to identify 9883 peptides comprising 1030 proteins, which were subsequently attributed to 975 gene products. Gene ontology analysis for molecular and cellular processes revealed new information about the metabolism, antioxidant defences and receptors of stallion spermatozoa. Mitochondrial proteins and those involved in catabolic processes constituted dominant categories. Several enzymes specific to β-oxidation of fatty acids were identified, and further experiments were carried out to ascertain their functional significance. Inhibition of carnitine palmitoyl transferase 1, a rate-limiting enzyme of β-oxidation, reduced motility parameters, indicating that β-oxidation contributes to maintenance of motility in stallion spermatozoa.

Journal ArticleDOI
TL;DR: It is concluded that although PCOS might originate in the intra-uterine environment through developmental programming by steroid excess, the interaction between genetic and environmental factors is crucial for its appearance.
Abstract: Polycystic ovary syndrome (PCOS) is a multifactorial disorder that arises from interactions between genetic, environmental and intra-uterine factors. Small-for-gestational-age (SGA) babies and the daughters of mothers with PCOS represent possible postnatal clinical targets for developmental programming by steroid excess. The presence of excess glucocorticoids and/or androgens during foetal organogenesis and growth might promote changes in gene expression, and these changes might be related to an increase in the risk of PCOS-like reproductive and metabolic disorders in postnatal life, such as rapid growth and weight gain during the first 2 years of life (only in SGA babies), hyperinsulinaemia, adipocyte dysfunction and childhood visceral obesity, premature pubarche and adrenarche (only in SGA babies) and PCOS. In the fourth decade of life, women who have PCOS may be at higher risk for type 2 diabetes mellitus, dyslipidaemia and systemic arterial hypertension, which suggests that these women are also at higher risk for cardiovascular disease during menopause. However, PCOS can also occur in women who were born at appropriate weight for GA or in newborns of women without PCOS, which suggests that genetic variation and environmental factors play important roles in the development and maintenance of PCOS in a population. Genome-wide association studies based on adequate population samples have shown a higher frequency of genetic polymorphisms of the LHCGR, THADA and DENND1A genes in women with PCOS. Genetic studies of PCOS have also included analyses of structural changes in the chromosome based on an assessment of telomere length in single, cross-sectional evaluations, and these studies have produced controversial results. The present narrative review assesses the multifactorial origins of PCOS (including environmental, genetic and intra-uterine factors) and the development of conditions associated with this disorder. It is concluded that although PCOS might originate in the intra-uterine environment through developmental programming by steroid excess, the interaction between genetic and environmental factors is crucial for its appearance. Follow-up studies should be conducted to assess the same populations over their entire lifespans while taking into account different aspects of the pathogenesis of PCOS.

Journal ArticleDOI
TL;DR: The work of the Oncofertility Consortium to provide fertility preservation options in the cancer setting and accelerate the acceptance of this critical topic on a global scale is described.
Abstract: In 2007, I was asked by the University of Calgary to participate in a symposium called 'Pushing the Boundaries--Advances that Will Change the World in 20 Years'. My topic was oncofertility, a word I had just coined to describe the intersection of two disciplines--oncology and fertility--and I was thrilled to share my passion for this new field and help young women with cancer protect their future reproductive health. Fertility preservation in the cancer setting lacked a concerted effort to bridge the disciplines in an organized manner. In early 2015, I was delighted to deliver a presentation for the Society for Reproduction and Fertility titled 'Sex in Three Cities', where I gave an update on the oncofertility movement, a remarkable cross-disciplinary, global collaboration created to address the fertility preservation needs of young cancer patients. During my tour of the UK, I was impressed by the interest among the society and its members to engage colleagues outside the discipline as well as the public in a dialogue about cutting-edge reproductive science. In this invited review, I will describe the work of the Oncofertility Consortium to provide fertility preservation options in the cancer setting and accelerate the acceptance of this critical topic on a global scale. I hope that one day this word and field it created will change the world for women who had been left out of the equation for far too long.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time that paternal obesity is associated with changes in gene expression and methylation status of extraembryonic tissue in a sex-specific manner, which reinforces the negative consequences of paternal obesity before conception, and emphasise the need for more lifestyle advice for prospective fathers.
Abstract: Fetal growth restriction (FGR) is a major obstetric complication stemming from poor placental development. We have previously demonstrated that paternal obesity in mice is associated with impaired embryo development and significantly reduced fetal and placental weights. We hypothesised that the FGR observed in our rodent model of paternal diet-induced obesity is associated with alterations in metabolic, cell signalling and stress pathways. Male C57BL/6 mice were fed either a normal or high-fat diet for 10 weeks before sperm collection for IVF and subsequent embryo transfer. On embryonic day 14, placentas were collected and RNA extracted from both male and female placentas to assess mRNA expression of 24 target genes using custom RT-qPCR arrays. Peroxisome proliferator-activated receptor alpha (Ppara) and caspase-12 (Casp12) expression were significantly altered in male placentas from obese fathers compared with normal (P<0.05), but not female placentas. PPARA and CASP12 proteins were localised within the placenta to trophoblast giant cells by immunohistochemistry, and relative protein abundance was determined by western blot analysis. DNA was also extracted from the same placentas to determine methylation status. Global DNA methylation was significantly increased in female placentas from obese fathers compared with normal (P<0.05), but not male placentas. In this study, we demonstrate for the first time that paternal obesity is associated with changes in gene expression and methylation status of extraembryonic tissue in a sex-specific manner. These findings reinforce the negative consequences of paternal obesity before conception, and emphasise the need for more lifestyle advice for prospective fathers.

Journal ArticleDOI
TL;DR: Both in monovulatory and poliovulatory species, the increase in PGE2 production induced by NO via a stimulatory effect on COX-2 activity appears to be a common ovulatory mechanism.
Abstract: Apart from its well-known role in regulating endothelial function, in mammals, nitric oxide (NO) is an important signaling molecule involved in many processes, regulating different biological functions. It has been demonstrated that NO plays a role in the physiology of the reproductive system, where it acts in controlling the activity of reproductive organs in both sexes. In the female of several animal species, experimental data suggest the presence of an intraovarian NO-generating system, which could be involved in the control of follicular development. The role of NO in regulating follicular atresia by apoptosis is still controversial, as a dual action depending mostly on its concentration has been documented. NO also displays positive effects on follicle development and selection related to angiogenic events and it could also play a modulatory role in steroidogenesis in ovarian cells. Both in monovulatory and poliovulatory species, the increase in PGE2 production induced by NO via a stimulatory effect on COX-2 activity appears to be a common ovulatory mechanism. Considerable evidence also exists to support an involvement of the NO/NO synthase system in the control of meiotic maturation of cumulus-oocyte complexes.

Journal ArticleDOI
TL;DR: This review addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNAs in the process of SSC renewal, spermatogonial mitosis, sPermatocyte meiosis, s permiogenesis, and the occurrence of TGCTs.
Abstract: microRNAs (miRNAs) are a class of small endogenous RNAs, 19-25 nucleotides in size, which play a role in the regulation of gene expression at transcriptional and post-transcriptional levels. Spermatogenesis is a complex process through which spermatogonial stem cells (SSCs) proliferate and differentiate into mature spermatozoa. A large number of miRNAs are abundantly expressed in spermatogenic cells. Growing evidence supports the essential role of miRNA regulation in normal spermatogenesis and male fertility and cumulative research has shown that this form of regulation contributes to the etiology of testicular germ cell tumors (TGCTs). In this review, we addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNA in the process of SSC renewal, spermatogonial mitosis, spermatocyte meiosis, spermiogenesis, and the occurrence of TGCTs.

Journal ArticleDOI
TL;DR: The results suggest that the hyperandrogenic follicular environment may be a key hazardous factor leading to the down-regulation of aromatase in PCOS.
Abstract: Women with polycystic ovary syndrome (PCOS) undergoing IVF-embryo transfer based-assisted reproductive technology (ART) treatment show variable ovarian responses to exogenous FSH administration. For better understanding and control of PCOS ovarian responses in ART, the present study was carried out to compare the follicular hormones and the expression of granulosa cell genes between PCOS and non-PCOS women during ART treatment as well as their IVF outcomes. Overall, 138 PCOS and 78 non-PCOS women were recruited for the present study. Follicular fluid collected from PCOS women showed high levels of testosterone. The expression of aromatase was found significantly reduced in luteinized granulosa cells from PCOS women. In cultured luteinized granulosa cells isolated from non-PCOS women, their exposure to testosterone at a level that was observed in PCOS follicles could decrease both mRNA and protein levels of aromatase in vitro. The inhibitory effect of testosterone was abolished by androgen receptor antagonist, flutamide. These results suggest that the hyperandrogenic follicular environment may be a key hazardous factor leading to the down-regulation of aromatase in PCOS.

Journal ArticleDOI
TL;DR: A thorough understanding of the epigenetic regulation in spermatogenesis will provide insightful information into the etiology of some unexplained infertility, offering new approaches for the treatment of male infertility.
Abstract: Spermatogenesis is composed of three distinctive phases, which include self-renewal of spermatogonia via mitosis, spermatocytes undergoing meiosis I/II and post-meiotic development of haploid spermatids via spermiogenesis. Spermatogenesis also involves condensation of chromatin in the spermatid head before transformation of spermatids to spermatozoa. Epigenetic regulation refers to changes of heritably cellular and physiological traits not caused by modifications in the DNA sequences of the chromatin such as mutations. Major advances have been made in the epigenetic regulation of spermatogenesis. In this review, we address the roles and mechanisms of epigenetic regulators, with a focus on the role of microRNAs and DNA methylation during mitosis, meiosis and spermiogenesis. We also highlight issues that deserve attention for further investigation on the epigenetic regulation of spermatogenesis. More importantly, a thorough understanding of the epigenetic regulation in spermatogenesis will provide insightful information into the etiology of some unexplained infertility, offering new approaches for the treatment of male infertility.

Journal ArticleDOI
TL;DR: Data indicate that the COX2/PG system plays crucial roles not only in testicular physiology (i.e., development, steroidogenesis, and spermatogenesis), but more importantly in the pathogenesis or maintenance of infertility status in the male gonad.
Abstract: Fil: Frungieri, Monica Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Biologia y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquimica Humana; Argentina

Journal ArticleDOI
TL;DR: The results reveal that the spermatogonia population is heterogeneous during the first wave of sPermatogenesis, and indicate that neonatal sperMatogonia may not serve as an ideal substitute for studying the function of adult sper matogonia.
Abstract: Prospermatogonia transition into type A spermatogonia, which provide the source for the spermatogonial stem cell (SSC) pool. A percentage of these type A spermatogonia then differentiate to enter meiosis as spermatocytes by ~P10. It is currently unclear when these distinct populations are initially formed in the neonatal testis, and when the expression of markers both characteristic of and required for the adult undifferentiated and differentiating states are established. In this study, we compared expression of known spermatogonial cell fate markers during normal development and in response to the differentiation signal provided by retinoic acid (RA). We found that some markers for the undifferentiated state (ZBTB16/PLZF and CDH1) were expressed in nearly all spermatogonia from P1 through P7. In contrast, differentiation markers (STRA8 and KIT) appeared in a subset of spermatogonia at P4, coincident with the onset of RA signaling. GFRA1, which was present in nearly all prospermatogonia at P1, was only retained in STRA8/KIT− spermatogonia. From P4 through P10, there was a great deal of heterogeneity in the male germ cell population in terms of marker expression, as markers characteristic of the undifferentiated (except GFRA1) and differentiating states were co-expressed through this interval. After P10, these fate markers diverged to mark distinct populations of undifferentiated and differentiating spermatogonia, and this pattern was maintained in the juvenile (P18) and adult (P>60) testis. Taken together, these results reveal that the spermatogonia population is heterogeneous during the first wave of spermatogenesis, and indicate that neonatal spermatogonia may not serve as an ideal substitute for studying the function of adult spermatogonia.

Journal ArticleDOI
TL;DR: It is suggested that IFNT upregulates neutrophil numbers and function via IL8 on LCs in the CL of early pregnant cows and that both neutrophils and IL8, stimulated by IFNT, are associated with an increase in P4 concentrations during the maternal recognition period in cows.
Abstract: When pregnancy is established, interferon tau (IFNT), a well-known pregnancy recognition signal in ruminants, is secreted by embryonic trophoblast cells and acts within the uterus to prepare for pregnancy. IFNT acts as an endocrine factor on the corpus luteum (CL) to induce refractory ability against the luteolytic action of PGF2 α. Hypothesising that IFNT may influence not only the uterine environment but also the CL in cows via local or peripheral circulation, we investigated qualitative changes in the CL of pregnant cows during the maternal recognition period (day 16) and the CL of non-pregnant cows. The CL of pregnant animals had a higher number of neutrophils, and the expression of interleukin 8 (IL8) mRNA and its protein was higher as well as compared with the CL of non-pregnant animals. Although IFNT did not affect progesterone (P4) secretion and neutrophil migration directly, it stimulated IL8 mRNA expression on luteal cells (LCs), influencing the neutrophils, resulting in the increased migration of IFNT-activated neutrophils. Moreover, both IFNT-activated neutrophils and IL8 increased P4 secretion from LCs in vitro. Our novel finding was the increase in neutrophils and IL8 within the CL of pregnant cows, suggesting the involvement of IFNT function within the CL toward establishment of pregnancy in cows. The present results suggest that IFNT upregulates neutrophil numbers and function via IL8 on LCs in the CL of early pregnant cows and that both neutrophils and IL8, stimulated by IFNT, are associated with an increase in P4 concentrations during the maternal recognition period in cows.

Journal ArticleDOI
TL;DR: This study demonstrates that size-specific follicle selection can be used as a non-invasive marker to identify high-quality oocytes and improve reproductive outcomes during eIVFG.
Abstract: Encapsulated in vitro follicle growth (eIVFG) has great potential to provide an additional fertility preservation option for young women and girls with cancer or other reproductive health threatening diseases. Currently, follicles are cultured for a defined period of time and analyzed as a cohort. However, follicle growth is not synchronous, and culturing follicles for insufficient or excessive times can result in compromised gamete quality. Our objective is to determine whether the selection of follicles based on size, rather than absolute culture time, better predict follicle maturity and oocyte quality. Multilayer secondary mouse follicles were isolated and encapsulated in 0.25% alginate. Follicles were cultured individually either for defined time periods or up to specific follicle diameter ranges, at which point several reproductive endpoints were analyzed. The metaphase II (MII) percentage after oocyte maturation on day 6 was the highest (85%) when follicles were cultured for specific days. However, if follicles were cultured to a terminal diameter of 300-350 μm irrespective of absolute time in culture, 93% of the oocytes reached MII. More than 90% of MII oocytes matured from follicles with diameters of 300-350 μm showed normal spindle morphology and chromosome alignment, 85% of oocytes showed two pronuclei after IVF, 81% developed into the two-cell embryo stage and 38% developed to the blastocyst stage, all significantly higher than the percentages in the other follicle size groups. Our study demonstrates that size-specific follicle selection can be used as a non-invasive marker to identify high-quality oocytes and improve reproductive outcomes during eIVFG.

Journal ArticleDOI
TL;DR: This review focuses on studies that have attempted to correlate transcription and translation during spermatogenesis by comparing the testicular transcriptome and proteome, and discusses the recent development and use of new transcriptomic approaches that provide a better proxy for the proteome.
Abstract: Spermatogenesis is a complex and tightly regulated process leading to the continuous production of male gametes, the spermatozoa. This developmental process requires the sequential and coordinated expression of thousands of genes, including many that are testis-specific. The molecular networks underlying normal and pathological spermatogenesis have been widely investigated in recent decades, and many high-throughput expression studies have studied genes and proteins involved in male fertility. In this review, we focus on studies that have attempted to correlate transcription and translation during spermatogenesis by comparing the testicular transcriptome and proteome. We also discuss the recent development and use of new transcriptomic approaches that provide a better proxy for the proteome, from both qualitative and quantitative perspectives. Finally, we provide illustrations of how testis-derived transcriptomic and proteomic data can be integrated to address new questions and how the 'proteomics informed by transcriptomics' technique, by combining RNA-seq and MS-based proteomics, can contribute significantly to the discovery of new protein-coding genes or new protein isoforms expressed during spermatogenesis.

Journal ArticleDOI
TL;DR: This paper critically review the current knowledge from human and animal studies regarding the direct and indirect effects of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life and highlights several key cellular mechanisms involved in these adverse reproductive deficits.
Abstract: Nicotine exposure during pregnancy through cigarette smoking, nicotine replacement therapies or e-cigarette use continues to be a widespread public health problem, impacting both fetal and postnatal health. Yet, at this time, there remains limited data regarding the safety and efficacy in using these nicotine products during pregnancy. Notably, reports assessing the effect of nicotine exposure on postnatal health outcomes in humans, including reproductive health, are severely lacking. Our current understanding regarding the consequences of nicotine exposure during pregnancy is limited to a few animal studies, which do not comprehensively address the underlying cellular mechanisms involved. This paper aims to critically review the current knowledge from human and animal studies regarding the direct and indirect effects (e.g. obesity) of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life. Furthermore, this review highlights several key cellular mechanisms involved in these adverse reproductive deficits including oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. By understanding the interplay of the cellular mechanisms involved, further strategies could be developed to prevent the reproductive abnormalities resulting from exposure to nicotine in utero and influence informed clinical guidelines for pregnant women.

Journal ArticleDOI
TL;DR: Studying the role of β-catenin signaling in the implantation of ectopic endometrium from endometriosis patients into ovariectomized severe combined immunodeficiency mice confirmed that co-immunoprecipitation and dual immunofluorescence studies confirmed ESR1, β-Catenin, and lymphoid enhancer factor 1/T cell factor 3 co-localization in the nucleus in HESCs after E2 treatment.
Abstract: Endometriosis is an estrogen-dependent disease that involves the adhesion, invasion, and angiogenesis of endometrial tissues outside of the uterine cavity. We hypothesized that a link exists between estrogen and beta-catenin (β-catenin) signaling in the pathogenesis of endometriosis. Human endometrial stromal cells (HESCs) were separated from eutopic endometrial tissues that were obtained from patients with endometriosis. β-catenin expression and cells invasiveness ability were up-regulated by 17β-estradiol (E2) in an estrogen receptor (ESR)-dependent manner, whereas β-catenin siRNA abrogated this phenomenon. Moreover, co-immunoprecipitation and dual immunofluorescence studies confirmed ESR1, β-catenin, and lymphoid enhancer factor 1/T cell factor 3 co-localization in the nucleus in HESCs after E2 treatment. To determine the role of β-catenin signaling in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium from endometriosis patients into ovariectomized severe combined immunodeficiency mice. The implantation of the endometrium was suppressed by β-catenin siRNA. Collectively, studies regarding β-catenin signaling are critical for improving our understanding of the pathogenesis of estrogen-induced endometriosis, which can translate into the development of treatments and therapeutic strategies for endometriosis.

Journal ArticleDOI
TL;DR: Examination of the evidence for the role of altered steroid and gonadotropin signaling systems and the proliferation/apoptosis balance in the ovary with cystic structures suggests that changes in the expression of ovarian molecular components associated with these cellular mechanisms could play a fundamental role in the pathogenesis of COD.
Abstract: Cystic ovarian disease (COD) is one of the main causes of reproductive failure in cattle and causes severe economic loss to the dairy farm industry because it increases both days open in the post partum period and replacement rates due to infertility. This disease is the consequence of the failure of a mature follicle to ovulate at the time of ovulation in the estrous cycle. This review examines the evidence for the role of altered steroid and gonadotropin signaling systems and the proliferation/apoptosis balance in the ovary with cystic structures. This evidence suggests that changes in the expression of ovarian molecular components associated with these cellular mechanisms could play a fundamental role in the pathogenesis of COD. The evidence also shows that gonadotropin receptor expression in bovine cystic follicles is altered, which suggests that changes in the signaling system of gonadotropins could play a fundamental role in the pathogenesis of conditions characterized by altered ovulation, such as COD. Ovaries from animals with COD exhibit a disrupted steroid receptor pattern with modifications in the expression of coregulatory proteins. These changes in the pathways of endocrine action would trigger the changes in proliferation and apoptosis underlying the aberrant persistence of follicular cysts. Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R251/suppl/DC1.

Journal ArticleDOI
TL;DR: The present data suggest that rs6505162 C>A in pre-MIR423 may contribute to the genetic predisposition to RPL by disrupting the production of mature MIR423 and its target gene, which consequently interferes with M IR423 functioning.
Abstract: Although the relationship between polymorphisms in microRNAs (miRNAs) and recurrent pregnancy loss (RPL) has been studied, there is very little data available in the literature. In the present study, we scanned 55 potentially functional polymorphisms in the miRNA coding region in Chinese women with unexplained RPL (URPL; no. 2011-10). The rs6505162 C>A in the MIR423 coding region was found to be significantly associated with the occurrence of human URPL. The rare A allele contributed to an increase in the expression of mature MIR423. C to A substitution in the polymorphism rs6505162 in pre-MIR423 repressed cell proliferation and migratory capacity. Further investigations showed that MIR423 could inversely regulate the expression of proliferation-associated 2 group 4 (PA2G4) by binding the 3'-UTR of PA2G4. Dual-luciferase assay indicated that the A allele in the polymorphism rs6505162 could more effectively suppress the expression of PA2G4 than the C allele could. Collectively, the present data suggest that rs6505162 C>A in pre-MIR423 may contribute to the genetic predisposition to RPL by disrupting the production of mature MIR423 and its target gene, which consequently interferes with MIR423 functioning.

Journal ArticleDOI
TL;DR: It is concluded that deoxynivalenol is deleterious to granulosa cell function and acts through a RSR pathway.
Abstract: Mycotoxins can reduce fertility and development in livestock, notably in pigs and poultry, although the effect of most mycotoxins on reproductive function in cattle has not been established. One major mycotoxin, deoxynivalenol (DON), not only targets immune cells and activates the ribotoxic stress response (RSR) involving MAPK activation, but also inhibits oocyte maturation in pigs. In this study, we determined the effect of DON on bovine granulosa cell function using a serum-free culture system. Addition of DON inhibited estradiol and progesterone secretion, and reduced levels of mRNA encoding estrogenic (CYP19A1) but not progestogenic (CYP11A1 and STAR) proteins. Cell apoptosis was increased by DON, which also increased FASLG mRNA levels. The mechanism of action of DON was assessed by western blotting and PCR experiments. Addition of DON rapidly and transiently increased phosphorylation of MAPK3/1, and resulted in a more prolonged phosphorylation of MAPK14 (p38) and MAPK8 (JNK). Activation of these pathways by DON resulted in time- and dose-dependent increases in abundance of mRNA encoding the transcription factors FOS, FOSL1, EGR1, and EGR3. We conclude that DON is deleterious to granulosa cell function and acts through a RSR pathway.