scispace - formally typeset
Journal ArticleDOI

A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%

TLDR
In this article, a solution-deposited polymer inverted double-and triple-junction solar cells were demonstrated, which achieved a power conversion efficiency of 10.39% and 11.83% respectively, with a bandgap ranging from 1.3 eV to 1.82 eV.
Abstract
High efficiency, solution-deposited polymer inverted double- and triple-junction solar cells are demonstrated. The devices are composed of three distinctive photosensitive materials in three distinct subcells, with minimal absorption spectral overlap, and with a bandgap ranging from 1.3 eV to 1.82 eV. A transparent hybrid inorganic organic mixture was introduced as an interconnecting layer to optically and physically connect the subcells. Accordingly, a power conversion efficiency of 10.39% was attained for the double-junction cell and a record high of 11.83% was obtained for the triple-junction cell.

read more

Citations
More filters
Journal ArticleDOI

Efficient organic solar cells processed from hydrocarbon solvents

TL;DR: In this paper, the synergistic effects of a hydrocarbon solvent, a novel additive, a suitable choice of polymer side chain, and strong temperature-dependent aggregation of the donor polymer are used to produce active layers of organic solar cells in an environmentally friendly way.
Journal ArticleDOI

Next-generation organic photovoltaics based on non-fullerene acceptors

TL;DR: In this article, the authors highlight recent progress on single-junction and tandem NFA solar cells and research directions to achieve even higher efficiencies of 15-20% using NFA-based organic photovoltaics are also proposed.
Journal ArticleDOI

Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells

TL;DR: Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Journal ArticleDOI

Metal oxides for optoelectronic applications

TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Journal ArticleDOI

Organic Optoelectronic Materials: Mechanisms and Applications

TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
References
More filters
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends

TL;DR: In this article, the authors report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene.
Journal ArticleDOI

Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology

TL;DR: By applying specific fabrication conditions summarized in the Experimental section and post-production annealing at 150°C, polymer solar cells with power-conversion efficiency approaching 5% were demonstrated.
Journal ArticleDOI

Polymer solar cells

TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Journal ArticleDOI

Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure

TL;DR: In this article, the authors showed that PFN can be incorporated into polymer light-emitting devices (PLEDs) to enhance electron injection from high-work-function metals such as aluminium (work function w of 4.3 eV) and gold (w ¼ 5.2 eV).
Related Papers (5)