scispace - formally typeset
Journal ArticleDOI

A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency.

Reads0
Chats0
TLDR
The results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.
Abstract
A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based on DRCN5T, DRCN7T, and DRCN9T with axisymmetric chemical structures exhibit much higher short-circuit current densities than those based on DRCN6T and DRCN8T with centrosymmetric chemical structures, which is attributed to their well-developed fibrillar network with a feature size less than 20 nm. The devices based on DRCN5T/PC71BM showed a notable certified power conversion efficiency (PCE) of 10.10% under AM 1.5G irradiation (100 mW cm(-2)) using a simple solution spin-coating fabrication process. This is the highest PCE for single-junction small-molecule-based organic photovoltaics (OPVs) reported to date. DRCN5T is a rather simpler molecule compared with all of the other high-performance molecules in OPVs to date, and this might highlight its advantage in the future possible commercialization of OPVs. These results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.

read more

Citations
More filters
Journal ArticleDOI

Organic Optoelectronic Materials: Mechanisms and Applications

TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Journal ArticleDOI

Versatile ternary organic solar cells: a critical review

TL;DR: In this paper, the authors summarize the recent progress of ternary solar cells and try to concise out the scientific issues in preparing high performance TSSs, which is the best candidate due to the cell with a high power conversion efficiency, easy fabrication and low cost.
Journal ArticleDOI

Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

TL;DR: Three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms, exhibit excellent inverted device performance and an average power conversion efficiency of 11.08% are reported.
References
More filters
Journal ArticleDOI

Using volatile additives to alter the morphology and performance of active layers in thin-film molecular photovoltaic devices incorporating bulk heterojunctions

TL;DR: The effect of volatile additives on the nanoscale morphology of molecular blends is summarized, and it is shown how these effects can improve the performance of devices.
Journal ArticleDOI

Synthesis and properties of acceptor–donor–acceptor molecules based on oligothiophenes with tunable and low band gap

TL;DR: In this article, a series of acceptor-donor-acceptor molecules (DCN3T, DCN5T and DCN7T ) based on oligothiophenes with low band gap are synthesized.
Related Papers (5)