scispace - formally typeset
Journal ArticleDOI

A technique for relativistic spin-polarised calculations

D. D. Koelling, +1 more
- 28 Aug 1977 - 
- Vol. 10, Iss: 16, pp 3107-3114
Reads0
Chats0
TLDR
In this paper, the spin-orbit interaction is included as a perturbation once the'relativistic' spin-polarised bands and wavefunctions have been obtained.
Abstract
A technique for reduction of the Dirac equation, which initially omits the spin-orbit interaction (thus keeping spin as a good quantum number), but retains all other relativistic kinematic effects such as mass-velocity, Darwin, and higher order terms is presented. The spin-orbit interaction can be included as a perturbation once the 'relativistic' spin-polarised bands and wavefunctions have been obtained. The technique is used together with the local spin density approximation for exchange and correlation to calculate the self-consistent charge and spin density of a neutral Gd atom. The calculated magnetic form factor agrees extremely well with experiment. Comparison with a paramagnetic RAPW calculation shows the procedure should be accurate and fast for general band structure determinations.

read more

Citations
More filters
Journal ArticleDOI

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Journal ArticleDOI

Relativistic regular two‐component Hamiltonians

TL;DR: In this article, potential-dependent transformations are used to transform the four-component Dirac Hamiltonian to effective two-component regular Hamiltonians, which already contain the most important relativistic effects, including spin-orbit coupling.
Book

Electronic Structure: Basic Theory and Practical Methods

TL;DR: In this paper, the Kohn-Sham ansatz is used to solve the problem of determining the electronic structure of atoms, and the three basic methods for determining electronic structure are presented.
Journal ArticleDOI

Ab-initio simulations of materials using VASP: Density-functional theory and beyond.

TL;DR: The implementation of various DFT functionals and many‐body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures are discussed.
Journal ArticleDOI

Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals

TL;DR: The construction of transferable, hierarchical basis sets are demonstrated, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set, since all basis functions are strictly localized.
References
More filters
Journal ArticleDOI

A local exchange-correlation potential for the spin polarized case: I

TL;DR: In this article, a spin dependent one-electron potential pertinent to ground state properties is obtained from calculations of the total energy per electron made with a 'bubble' (or random phase) type of dielectric function.
Journal ArticleDOI

Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism

TL;DR: The spin-density-functional (SDF) formalism has been used for the interpretation of approximate versions of the theory, in particular the local-spin-density (LSD) approximation, which is formally valid only in the limit of slow and weak spatial variation in the density as discussed by the authors.
Journal ArticleDOI

Conduction electron polarization of gadolinium metal

TL;DR: The zero field moment of Gd has been measured at 4.2K for a single crystal prepared by solid state electrotransport as mentioned in this paper, which is magnetically very soft: the moment is (7.630+or 0.010) mu B per atom in the b direction and is slightly smaller in the c direction.
Related Papers (5)