scispace - formally typeset
Open AccessJournal ArticleDOI

Accessory subunits are integral for assembly and function of human mitochondrial complex I

TLDR
It is shown that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability, and coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.

read more

Citations
More filters
Journal ArticleDOI

A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.

David E. Gordon, +128 more
- 30 Apr 2020 - 
TL;DR: A human–SARS-CoV-2 protein interaction map highlights cellular processes that are hijacked by the virus and that can be targeted by existing drugs, including inhibitors of mRNA translation and predicted regulators of the sigma receptors.
Journal ArticleDOI

Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2.

TL;DR: The structure of the human respiratory chain megacomplex with 140 subunits and a subset of associated cofactors is examined using cryo-electron microscopy to reveal the precise assignment of individual subunits of human CI and CIII and enables future in-depth analysis of the electron transport chain as a whole.
Journal ArticleDOI

The Enigma of the Respiratory Chain Supercomplex

TL;DR: Data and hypotheses on the structures, roles, and assembly of respiratory-chain supercomplexes are evaluated and a future research agenda is proposed to address unanswered questions.
Journal ArticleDOI

Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain

TL;DR: The oxidative phosphorylation electron transport chain (OXPHOS-ETC) of the inner mitochondrial membrane is composed of five large protein complexes, named CI–CV, and recent work has shed light on the assembly and function of the SCs.
References
More filters
Journal ArticleDOI

NIH Image to ImageJ: 25 years of image analysis

TL;DR: The origins, challenges and solutions of NIH Image and ImageJ software are discussed, and how their history can serve to advise and inform other software projects.
Journal ArticleDOI

MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.

TL;DR: MaxQuant, an integrated suite of algorithms specifically developed for high-resolution, quantitative MS data, detects peaks, isotope clusters and stable amino acid isotope–labeled (SILAC) peptide pairs as three-dimensional objects in m/z, elution time and signal intensity space and achieves mass accuracy in the p.p.b. range.
Journal ArticleDOI

Significance analysis of microarrays applied to the ionizing radiation response

TL;DR: A method that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements is described, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.
Journal ArticleDOI

Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.

TL;DR: A discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) system for the separation of proteins in the range from 1 to 100 kDa is described, and the omission of glycine and urea prevents disturbances which might occur in the course of subsequent amino acid sequencing.
Journal ArticleDOI

Genome engineering using the CRISPR-Cas9 system

TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Related Papers (5)