scispace - formally typeset
Journal ArticleDOI

Applications of 2D MXenes in energy conversion and storage systems

Reads0
Chats0
TLDR
The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is addressed, along with their promise as catalysts for ammonium synthesis from nitrogen.
Abstract
Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic compounds, are materials composed of a few atomic layers of transition metal carbides, nitrides, or carbonitrides. Ti3C2, the first 2D layered MXene, was isolated in 2011. This material, which is a layered bulk material analogous to graphite, was derived from its 3D phase, Ti3AlC2 MAX. Since then, material scientists have either determined or predicted the stable phases of >200 different MXenes based on combinations of various transition metals such as Ti, Mo, V, Cr, and their alloys with C and N. Extensive experimental and theoretical studies have shown their exciting potential for energy conversion and electrochemical storage. To this end, we comprehensively summarize the current advances in MXene research. We begin by reviewing the structure types and morphologies and their fabrication routes. The review then discusses the mechanical, electrical, optical, and electrochemical properties of MXenes. The focus then turns to their exciting potential in energy storage and conversion. Energy storage applications include electrodes in rechargeable lithium- and sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. In terms of energy conversion, photocatalytic fuel production, such as hydrogen evolution from water splitting, and carbon dioxide reduction are presented. The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is also addressed, along with their promise as catalysts for ammonium synthesis from nitrogen. Finally, their application potential is summarized.

read more

Citations
More filters

Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries

TL;DR: In this article, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries.

Pseudocapacitive Electrodes Produced By Oxidant-Free Polymerization of Pyrrole Between the Layers of 2D Titanium Carbide (MXene)

TL;DR: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate as discussed by the authors.
Journal ArticleDOI

Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges

TL;DR: Nanomaterials have emerged as an amazing class of materials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm as discussed by the authors.
Journal ArticleDOI

Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications

TL;DR: In this article, the state-of-the-art progress on MXene theory, materials synthesis techniques, morphology modifications, opto-electro-magnetic properties, and their applications are comprehensively discussed.
References
More filters
Journal ArticleDOI

Recent advances in synthesis, properties, and applications of phosphorene

TL;DR: A review of the most significant recent studies in the field of phosphorene research and technology can be found in this article, where the authors focus on the synthesis and layer number determination, anisotropic properties, tuning of the band gap and related properties, strain engineering, and applications in electronics, thermoelectrics, and energy storage.
Journal ArticleDOI

Novel amperometric glucose biosensor based on MXene nanocomposite.

TL;DR: The Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.
Journal ArticleDOI

Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis

TL;DR: In this paper, a series of TiO 2 catalysts self-doped with Ti 3+ were successfully synthesized by a simple one-step solvothermal method with low-cost NaBH 4 added as a reductant.
Journal ArticleDOI

Light at the interface: the potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water

TL;DR: This tutorial review describes recent progress in using Attenuated Total Reflection spectroscopy for studying heterogeneous catalysts in water and illustrates that ATR-IR holds great promise in the field of liquid phase heterogeneous catalysis.
Related Papers (5)