scispace - formally typeset
Journal ArticleDOI

Bright, multicoloured light-emitting diodes based on quantum dots

TLDR
In this paper, a solution-processable core-shell quantum dots with a CdSe core and a ZnS or CdS/ZnS shell were used as emissive layers in the devices.
Abstract
Quantum-dot-based LEDs are characterized by pure and saturated emission colours with narrow bandwidth, and their emission wavelength is easily tuned by changing the size of the quantum dots. However, the brightness, efficiency and lifetime of LEDs need to be improved to meet the requirements of commercialization in the near future. Here, we report red, orange, yellow and green LEDs with maximum luminance values of 9,064, 3,200, 4,470 and 3,700 cd m−2, respectively, the highest values reported so far. Solution-processable core–shell quantum dots with a CdSe core and a ZnS or CdS/ZnS shell were used as emissive layers in the devices. By optimizing the thicknesses of the constituent layers of the devices, we were able to develop quantum-dot-based LEDs with improved electroluminescent efficiency (1.1–2.8 cd A−1), low turn-on voltages (3–4 V) and long operation lifetimes. These findings suggest that such quantum-dot-based LEDs will be promising for use in flat-panel displays.

read more

Citations
More filters
Journal ArticleDOI

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications

TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Journal ArticleDOI

Emergence of colloidal quantum-dot light-emitting technologies

TL;DR: In this paper, the authors summarized the key advantages of using quantum dots as luminophores in light-emitting devices (LEDs) and outlined the operating mechanisms of four types of QD-LEDs.
Journal ArticleDOI

Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

TL;DR: A ligand-assisted reprecipitation strategy is developed to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies, expected to exhibit interesting nanoscale excitonic properties.
Journal ArticleDOI

Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review

TL;DR: In this article, recent exciting progresses on CD and GQD-based optoelectronic and energy devices, such as light emitting diodes (LEDs), solar cells (SCs), photodetctors (PDs), photocatalysis, batteries, and supercapacitors are highlighted.
Journal ArticleDOI

Full-colour quantum dot displays fabricated by transfer printing

TL;DR: In this paper, a size-selective quantum dot patterning technique that involves kinetically controlling the nanotransfer process without a solvent is described, which allows fabrication of a 4-inch (or larger) thin-film transistor display with high colour purity and extremely high resolution.
References
More filters
Journal ArticleDOI

Organic Electroluminescent Diodes

TL;DR: In this article, a double-layer structure of organic thin films was prepared by vapor deposition, and efficient injection of holes and electrons was provided from an indium-tinoxide anode and an alloyed Mg:Ag cathode.
Journal ArticleDOI

Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals

TL;DR: In this article, the extinction coefficient per mole of nanocrystals at the first exitonic absorption peak, e.g., for high-quality CdTe, CdSe, and CdS, was found to be strongly dependent on the size of the nanocrystal, between a square and a cubic dependence.
Journal ArticleDOI

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies

TL;DR: In this article, solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤ 5%, are presented.
Journal ArticleDOI

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal Article

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Related Papers (5)