scispace - formally typeset
Journal ArticleDOI

Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods.

Dario Natali, +1 more
- 15 Mar 2012 - 
- Vol. 24, Iss: 11, pp 1357-1387
TLDR
A comprehensive overview on the subject of current injection in organic thin film transistors is offered: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices.
Abstract
A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits.

read more

Citations
More filters
Journal ArticleDOI

Organic light detectors: photodiodes and phototransistors.

TL;DR: This review suggests that organic phototransistors have a large potential to be used in a variety of optoelectronic peculiar applications, such as a photo-sensor, opto-isolator, image sensor, optically controlled phase shifter, and opto -electronic switch and memory.
Journal ArticleDOI

25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters

TL;DR: This review discusses soft robots which allow actuation with several degrees of freedom, and shows that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space.
Journal ArticleDOI

Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

TL;DR: Recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon.
Journal ArticleDOI

Doped Organic Transistors.

TL;DR: The most successful doping models and an overview of the wide variety of materials used as dopants are presented and the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed.
Journal ArticleDOI

Recent Progress in High-Mobility Organic Transistors: A Reality Check.

TL;DR: Overall, this review brings together important information that aids reliable OTFT data analysis, while providing guidelines for the development of next-generation organic semiconductors.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

High-Resolution Inkjet Printing of All-Polymer Transistor Circuits

TL;DR: It is shown that the use of substrate surface energy patterning to direct the flow of water-based conducting polymer inkjet droplets enables high-resolution definition of practical channel lengths of 5 micrometers, and high mobilities were achieved.
Journal ArticleDOI

General observation of n-type field-effect behaviour in organic semiconductors

TL;DR: It is demonstrated that the use of an appropriate hydroxyl-free gate dielectric—such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)—can yield n-channel FET conduction in most conjugated polymers, revealing that electrons are considerably more mobile in these materials than previously thought.
Related Papers (5)