scispace - formally typeset
Open AccessJournal ArticleDOI

CO excitation of normal star forming galaxies out to z= 1.5 as regulated by the properties of their interstellar medium

TLDR
In this article, the authors investigated the CO excitation of normal (near-IR selected BzK) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2-1], CO[3-2], and CO[5-4] transitions for four galaxies, including VLA observations of CO[1-0] for three of them, with the aim of constraining the average state of H2 gas.
Abstract
We investigate the CO excitation of normal (near-IR selected BzK) star-forming (SF) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2-1], CO[3-2], and CO[5-4] transitions for four galaxies, including VLA observations of CO[1-0] for three of them, with the aim of constraining the average state of H2 gas. By exploiting previous knowledge of the velocity range, spatial extent, and size of the CO emission, we measure reliable line fluxes with a signal-to-noise ratio >4-7 for individual transitions. While the average CO spectral line energy distribution (SLED) has a subthermal excitation similar to the Milky Way (MW) up to CO[3-2], we show that the average CO[5-4] emission is four times stronger than assuming MW excitation. This demonstrates that there is an additional component of more excited, denser, and possibly warmer molecular gas. The ratio of CO[5-4] to lower-J CO emission is lower than in local (ultra-)luminous infrared galaxies (ULIRGs) and high-redshift starbursting submillimeter galaxies, however, and appears to be closely correlated with the average intensity of the radiation field and with the star formation surface density, but not with the star formation efficiency. The luminosity of the CO[5-4] transition is found to be linearly correlated with the bolometric infrared luminosity over four orders of magnitudes. For this transition, z = 1.5 BzK galaxies follow the same linear trend as local spirals and (U)LIRGs and high-redshift star-bursting submillimeter galaxies. The CO[5-4] luminosity is thus empirically related to the dense gas and might be a more convenient way to probe it than standard high-density tracers that are much fainter than CO. We see excitation variations among our sample galaxies that can be linked to their evolutionary state and clumpiness in optical rest-frame images. In one galaxy we see spatially resolved excitation variations, where the more highly excited part of the galaxy corresponds to the location of massive SF clumps. This provides support to models that suggest that giant clumps are the main source of the high-excitation CO emission in high-redshift disk-like galaxies. © ESO, 2015.

read more

Citations
More filters

HERACLES: The HERA CO-Line Extragalactic Survey

TL;DR: In this paper, the authors proposed a method to find the minimum number of stars in the UHRA data set, which is not available in the data set available in this paper.
Journal ArticleDOI

ALMA spectroscopic survey in the Hubble ultra deep field: survey description

TL;DR: In this article, the authors present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available.
References
More filters
Journal ArticleDOI

Galactic stellar and substellar initial mass function

TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Journal ArticleDOI

The Global Schmidt law in star forming galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Journal ArticleDOI

The Global Schmidt Law in Star Forming Galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law, over the full range of gas densities and star formation rates (SFRs) observed in galaxies.
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era

TL;DR: In this paper, the authors calculated IR emission spectra for dust heated by starlight, for mixtures of amorphous silicate and graphitic grains, including varying amounts of PAH particles.
Related Papers (5)