scispace - formally typeset
Open AccessJournal ArticleDOI

Collisional excitation of the [c ii] fine structure transition in interstellar clouds

Reads0
Chats0
TLDR
In this paper, the collisional excitation of the [C II] line of ionized carbon in terms of line intensities produced by simple cloud models has been analyzed and derived for several limiting cases and carried out numerical solutions using a large velocity gradient model for more inclusive analysis.
Abstract
We analyze the collisional excitation of the 158 {mu}m (1900.5 GHz) fine structure transition of ionized carbon in terms of line intensities produced by simple cloud models. The single C{sup +} fine structure transition is a very important coolant of the atomic interstellar medium (ISM) and of photon-dominated regions in which carbon is partially or completely in ionized form. The [C II] line is widely used as a tracer of star formation in the Milky Way and other galaxies. Excitation of the [C II] fine structure transition can be via collisions with hydrogen molecules, atoms, and electrons. Analysis of [C II] observations is complicated by the fact that it is difficult to determine the optical depth of the line. We discuss the excitation of the [C II] line, deriving analytic results for several limiting cases and carry out numerical solutions using a large velocity gradient model for a more inclusive analysis. For antenna temperatures up to 1/3 of the brightness temperature of the gas kinetic temperature, the antenna temperature is linearly proportional to the column density of C{sup +} irrespective of the optical depth of the transition. This is appropriately referred to as the effectively optically thin approximation. We reviewmore » the critical densities for excitation of the [C II] line by various collision partners, briefly analyze C{sup +} absorption, and conclude with a discussion of C{sup +} cooling and how the considerations for line intensities affect the behavior of this important coolant of the ISM.« less

read more

Citations
More filters
Journal ArticleDOI

Dusty Star Forming Galaxies at High Redshift

TL;DR: In this paper, the authors summarized the current status of star-forming galaxies (DSFGs) studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies), and also the selection and characterization of more recently discovered DSFG populations.
Journal ArticleDOI

Dusty Star-Forming Galaxies at High Redshift

TL;DR: In this paper, the authors summarized the current status of star-forming galaxies (DSFGs), focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies), who were summarized in the last review of this field over a decade ago, Blain et al.
Journal ArticleDOI

A Herschel [C ii] Galactic plane survey - I. The global distribution of ISM gas components

TL;DR: In this paper, the authors present the first longitude-velocity maps of the [C ii] emission for Galactic latitudes b ǫ, ± 0.5°, and ± 1.0°.
References
More filters
Journal ArticleDOI

Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy

TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Book

Physics of the Interstellar and Intergalactic Medium

TL;DR: In this paper, a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium is presented, including the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves.
Journal ArticleDOI

The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI)

Th. de Graauw, +179 more
TL;DR: The Heterodyne Instrument for the Far-Infrared (HIFI) was launched onboard ESA's Herschel Space Observatory in May 2009 as mentioned in this paper, which is a set of 7 heterodyne receivers that are electronically tuneable, covering 480-1250 GHz with SIS mixers and the 1410-1910 GHz range with hot electron bolometer mixers.
Journal ArticleDOI

Molecular cooling and thermal balance of dense interstellar clouds

TL;DR: The cooling produced by line emission from a variety of molecular and atomic species, including those observed as well as theoretically expected in dense interstellar clouds, was analyzed in detail in this article, and the contribution of a number of gas heating machanisms which may be present in interstellar clouds including heating by cosmic rays, H/sub 2/ formation, gravitational collapse, and magnetic ion-neutral slip heating.
Related Papers (5)