scispace - formally typeset
Journal ArticleDOI

Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors

Myeongjin Kim, +1 more
- 21 May 2014 - 
- Vol. 16, Iss: 23, pp 11323-11336
TLDR
Owing to the high capacitance and excellent rate performance of SiC-N-MnO2 and AC, as well as the synergistic effects of the two electrodes, a constructed asymmetric supercapacitor exhibited superior electrochemical performance.
Abstract
In order to achieve high energy and power densities, a high-voltage asymmetric electrochemical supercapacitor has been developed, with activated carbon (AC) as the negative electrode and a silicon carbide–MnO2 nanoneedle (SiC–N-MnO2) composite as the positive electrode. A neutral aqueous Na2SO4 solution was used as the electrolyte. SiC–N-MnO2 was prepared by packing growing MnO2 nanoneedle crystal species in only one direction on the silicon carbide surface. AC was oxidized by thermal treatment in order to introduce oxygen-containing functional groups. Owing to the high capacitance and excellent rate performance of SiC–N-MnO2 and AC, as well as the synergistic effects of the two electrodes, a constructed asymmetric supercapacitor exhibited superior electrochemical performance. The optimized asymmetric supercapacitor could be cycled reversibly in the voltage range from 0 to 1.9 V, and it exhibited a specific capacitance of 59.9 F g−1 at a scan rate of 2 mV s−1 and excellent energy density and power density (30.06 W h kg−1 and 113.92 W kg−1, respectively) with a specific capacitance loss of less than 3.1% after 1000 charge–discharge cycles, indicating excellent electrochemical stability. These encouraging results show great potential in terms of developing energy storage devices with high energy and power densities for practical applications.

read more

Citations
More filters
Journal ArticleDOI

A review of electrolyte materials and compositions for electrochemical supercapacitors

TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Journal ArticleDOI

Review of supercapacitors: Materials and devices

TL;DR: In this paper, a concise description of technologies and working principles of different materials utilized for supercapacitors has been provided, where the main focus has been on materials like carbon-based nanomaterials, metal oxides, conducting polymers and their nanocomposites along with some novel materials like metal-organic frameworks, MXenes, metal nitrides, covalent organic frameworks and black phosphorus.
Journal ArticleDOI

Asymmetric Supercapacitor Electrodes and Devices.

TL;DR: Asymmetric supercapacitors assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density, with the main focus on an extensive survey of the materials developed for ASC electrodes.

Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors

TL;DR: In this paper, the authors present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors.
Journal ArticleDOI

Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors

TL;DR: In this paper, the impact of reaction time on the electrochemical capacitive properties of CuCo2O4/CuO nanocomposites is reported, where the reaction time of the reaction is controlled by microwave assisted reflux method at different reaction times.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Principles and applications of electrochemical capacitors

TL;DR: In this article, the fundamental principles, performance, characteristics, present and future applications of electrochemical capacitors are presented in this communication, and different applications demanding large ECs with high voltage and improved energy and power density are under discussion.
Journal ArticleDOI

Graphene-based supercapacitor with an ultrahigh energy density

TL;DR: The key to success was the ability to make full utilization of the highest intrinsic surface capacitance and specific surface area of single-layer graphene by preparing curved graphene sheets that will not restack face-to-face.
Journal ArticleDOI

Graphene Oxide−MnO2 Nanocomposites for Supercapacitors

TL;DR: This method provides a facile and straightforward approach to deposit MnO(2) nanoparticles onto the graphene oxide sheets (single layer of graphite oxide) and may be readily extended to the preparation of other classes of hybrids based on GO sheets for technological applications.
Related Papers (5)