scispace - formally typeset
Open AccessJournal ArticleDOI

Dynamics of range margins for metapopulations under climate change

Reads0
Chats0
TLDR
The study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics and the relative sensitivity of range limits to climate change compared with that of the metAPopulation centroid.
Abstract
We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Impacts of climate change on the future of biodiversity.

TL;DR: Overall, this review shows that current estimates of future biodiversity are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered.
Journal ArticleDOI

Accelerating extinction risk from climate change

TL;DR: Estimating a global mean extinction rate was synthesized in order to determine which factors contribute the greatest uncertainty to climate change–induced extinction risks and suggest that extinction risks will accelerate with future global temperatures.
Journal ArticleDOI

Uses and misuses of bioclimatic envelope modeling

TL;DR: Critics of bioclimatic envelope models are reviewed to suggest that criticism has often been misplaced, resulting from confusion between what the models actually deliver and what users wish that they would express.
Journal ArticleDOI

Assessing species' vulnerability to climate change

TL;DR: In this article, three main approaches used to derive these currencies (correlative, mechanistic and trait-based) and their associated data requirements, spatial and temporal scales of application and modelling methods are described.
References
More filters
Journal ArticleDOI

Ecological and Evolutionary Responses to Recent Climate Change

TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Journal ArticleDOI

Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?

TL;DR: In this paper, a hierarchical modeling framework is proposed through which some of these limitations can be addressed within a broader, scale-dependent framework, and it is proposed that, although the complexity of the natural system presents fundamental limits to predictive modelling, the bioclimate envelope approach can provide a useful first approximation as to the potentially dramatic impact of climate change on biodiversity.
Journal ArticleDOI

Poleward shifts in geographical ranges of butterfly species associated with regional warming

TL;DR: The authors showed that migratory species can respond rapidly to yearly climate variation, and further global warming is predicted to continue for the next 50-100 years, and some migratory animals can respond quickly to climate variation.
Related Papers (5)