scispace - formally typeset
Open AccessJournal ArticleDOI

Dynamics of thin current sheets: Cluster observations

TLDR
In this article, the authors tried to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models, and looked for these signatures in Cluster data from two events.
Abstract
. The paper tries to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models, and looks for these signatures in Cluster data from two events. For both events transient magnetic signatures are observed, together with fast ion flows. In the simplest form of NENL scenario, with a large-scale two-dimensional reconnection site, quasi-invariance along Y is expected. Thus the magnetic signatures in the S/C frame are interpreted as relative motions, along the X or Z direction, of a quasi-steady X-line, with respect to the S/C. In the simplest form of CD scenario an azimuthal modulation is expected. Hence the signatures in the S/C frame are interpreted as signatures of azimuthally (along Y) moving current system associated with low frequency fluctuations of Jy and the corresponding field-aligned currents (Jx). Event 1 covers a pseudo-breakup, developing only at high latitudes. First, a thin (H≈2000 km≈2ρi, with ρi the ion gyroradius) Current Sheet (CS) is found to be quiet. A slightly thinner CS (H≈1000–2000 km≈1–2ρi), crossed about 30 min later, is found to be active, with fast earthward ion flow bursts (300–600 km/s) and simultaneous large amplitude fluctuations (δB/B~1). In the quiet CS the current density Jy is carried by ions. Conversely, in the active CS ions are moving eastward; the westward current is carried by electrons that move eastward, faster than ions. Similarly, the velocity of earthward flows (300–600 km/s), observed during the active period, maximizes near or at the CS center. During the active phase of Event 1 no signature of the crossing of an X-line is identified, but an X-line located beyond Cluster could account for the observed ion flows, provided that it is active for at least 20 min. Ion flow bursts can also be due to CD and to the corresponding dipolarizations which are associated with changes in the current density. Yet their durations are shorter than the duration of the active period. While the overall ∂Bz∂t is too weak to accelerate ions up to the observed velocities, short duration ∂Bz∂t can produce the azimuthal electric field requested to account for the observed ion flow bursts. The corresponding large amplitude perturbations are shown to move eastward, which suggests that the reduction in the tail current could be achieved via a series of eastward traveling partial dipolarisations/CD. The second event is much more active than the first one. The observed flapping of the CS corresponds to an azimuthally propagating wave. A reversal in the proton flow velocity, from −1000 to +1000 km/s, is measured by CODIF. The overall flow reversal, the associated change in the sign of Bz and the relationship between Bx and By suggest that the spacecraft are moving with respect to an X-line and its associated Hall-structure. Yet, a simple tailward retreat of a large-scale X-line cannot account for all the observations, since several flow reversals are observed. These quasi-periodic flow reversals can also be associated with an azimuthal motion of the low frequency oscillations. Indeed, at the beginning of the interval By varies rapidly along the Y direction; the magnetic signature is three-dimensional and essentially corresponds to a structure of filamentary field-aligned current, moving eastward at ~200 km/s. The transverse size of the structure is ~1000 km. Similar structures are observed before and after. These filamentary structures are consistent with an eastward propagation of an azimuthal modulation associated with a current system Jy, Jx. During Event 1, signatures of filamentary field-aligned current structures are also observed, in association with modulations of Jy. Hence, for both events the structure of the magnetic fields and currents is three-dimensional.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Particle Acceleration in the Magnetotail and Aurora

TL;DR: In this article, the acceleration processes in the magnetotail and the processes that enhance particle precipitation from the tail into the ionosphere through electric fields in the auroral acceleration region, generating or intensifying discrete auroral arcs are discussed.
Journal ArticleDOI

Formation of a transient front structure near reconnection point in 3‐D PIC simulations

TL;DR: In this article, a massively parallel numerical simulation of magnetic reconnection is presented, and the unstable evolution of reconnection transient front structures is studied, and it is initialized with a localized perturbation aligned in the cross-tail direction.
Journal ArticleDOI

Multipoint observations of dipolarization front formation by magnetotail reconnection

TL;DR: In this paper, the authors present multipoint observations of magnetotail plasma sheet dynamics during an event in which magnetic reconnection and dipolarization were observed at −16 < X < −15 RE (mid-tail) and at −10 < X −4.8 RE (near-Earth plasma sheet), respectively.
References
More filters
Journal ArticleDOI

On a plasma sheath separating regions of oppositely directed magnetic field

TL;DR: In this article, an exact solution of the Vlasov equations was found which describes a layer of plasma confined between two regions of oppositely directed magnetic field, and the electrons and ions have Maxwellian distributions on the plane where the magnetic field vanishes.
Journal ArticleDOI

The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results

TL;DR: In this paper, the authors present an overview of the instrumentation used to measure the magnetic field on the four Cluster spacecraft and an overview the performance of the operational modes used in flight.
Journal ArticleDOI

First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment

TL;DR: The Cluster Ion Spectrometry (CIS) experiment as discussed by the authors measured the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e.
Journal ArticleDOI

Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms

TL;DR: In this paper, the authors present a phenomenological model of the magnetospheric substorm sequence, which can be divided into three main phases: the growth phase, the expansion phase, and the recovery phase.
Journal ArticleDOI

Neutral line model of substorms: Past results and present view

TL;DR: In this article, the authors reviewed the NENL model of magnetospheric substorms, including the role of coupling with the solar wind and interplanetary magnetic field, the growth phase sequence, the expansion phase (and onset), and the recovery phase.
Related Papers (5)