scispace - formally typeset
Journal ArticleDOI

Efficient Electrochemical Reduction of Carbon Dioxide to Acetate on Nitrogen-Doped Nanodiamond

Reads0
Chats0
TLDR
N-doped nanodiamond/Si rod array (NDD/Si RA) was proposed as an efficient nonmetallic electrocatalyst for CO2 reduction and preferentially and rapidly converted CO2 to acetate over formate with an onset potential of -0.36 V, overcoming the usual limitation of low selectivity for C2 products.
Abstract
Electrochemical reduction of CO2 is an attractive technique for reducing CO2 emission and converting it into useful chemicals, but it suffers from high overpotential, low efficiency or poor product selectivity. Here, N-doped nanodiamond/Si rod array (NDD/Si RA) was proposed as an efficient nonmetallic electrocatalyst for CO2 reduction. It preferentially and rapidly converted CO2 to acetate over formate with an onset potential of −0.36 V (vs RHE), overcoming the usual limitation of low selectivity for C2 products. Moreover, faradic efficiency of 91.2–91.8% has been achieved for CO2 reduction at −0.8 to −1.0 V. Its superior performance for CO2 reduction can be attributed to its high overpotential for hydrogen evolution and N doping, where N-sp3C species was highly active for CO2 reduction. Electrokinetic data and in situ infrared spectrum revealed the main pathway for CO2 reduction might be CO2 → CO2•– → (COO)2• → CH3COO–.

read more

Citations
More filters
Journal ArticleDOI

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels

TL;DR: In this article, the authors review recent advances and challenges in the understanding of electrochemical CO2 reduction and discuss existing models for the initial activation of CO2 on the electrocatalyst and their importance for understanding selectivity.
Journal ArticleDOI

Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle

TL;DR: Using tetrahexahedral gold nanorods as a heterogeneous electrocatalyst, an electrocatalytic N2 reduction reaction was shown to be possible at room temperature and atmospheric pressure, with a high Faradic efficiency up to 4.02% at -0.2 V vs reversible hydrogen electrode.
Journal ArticleDOI

Selective visible-light-driven photocatalytic CO 2 reduction to CH 4 mediated by atomically thin CuIn 5 S 8 layers

TL;DR: In this article, the authors show that the formation of a highly stable Cu-C-O-In intermediate at the Cu-In dual sites is the key feature determining selectivity.
Journal ArticleDOI

Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products

TL;DR: In this article, the authors discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design, focusing on findings extracted from in situ and operando characterizations.
Journal ArticleDOI

Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and their Related Reaction Mechanisms

TL;DR: Recent progress on the design and synthesis of solid-state catalysts for the electrochemical reduction of CO2 is described, followed by the general parameters for CO2 electroreduction and a summary of the reaction apparatus.
References
More filters
Journal ArticleDOI

The properties and applications of nanodiamonds

TL;DR: The rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups are discussed.
Journal ArticleDOI

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels

TL;DR: The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
Journal ArticleDOI

New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces

TL;DR: In this paper, the authors report new insights into the electrochemical reduction of CO2 on a metallic copper surface, enabled by the development of an experimental methodology with unprecedented sensitivity for the identification and quantification of CO 2 electroreduction products.
Journal ArticleDOI

Hydrogen evolution by a metal-free electrocatalyst

TL;DR: This work couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts.
Journal ArticleDOI

The teraton challenge. A review of fixation and transformation of carbon dioxide

TL;DR: In this paper, the authors present a review of CO2, its synthetic reactions and their possible role in future CO2 mitigation schemes that have to match the scale of man-made CO2 in the atmosphere, which rapidly approaches 1 teraton.
Related Papers (5)