scispace - formally typeset
Open AccessJournal ArticleDOI

Elementary and global aspects of calcium signalling.

Michael J. Berridge
- 01 Mar 1997 - 
- Vol. 499, Iss: 2, pp 291-306
TLDR
Using Ca2+ imaging techniques, the opening of individual channels has now been visualized and models have been proposed to explain how these elementary events are coordinated to generate the global Ca 2+ signals that regulate cellular activity.
Abstract
Calcium is a ubiquitous second messenger used to regulate a wide range of cellular processes. This role in signalling has to be conducted against the rigid homeostatic mechanisms that ensure that the resting level of Ca2+ is kept low (i.e. between 20 and 100 nmol l-1) in order to avoid the cytotoxic effects of a prolonged elevation of [Ca2+]. Cells have evolved a sophisticated signalling system based on the generation of brief pulses of Ca2+ which enables this ion to be used as a messenger, thus avoiding its toxic effects. Such Ca2+ spikes usually result from the coordinated release of Ca2+ from internal stores using either inositol 1,4,5-trisphosphate or ryanodine receptors. Using Ca2+ imaging techniques, the opening of individual channels has now been visualized and models have been proposed to explain how these elementary events are coordinated to generate the global Ca2+ signals that regulate cellular activity.

read more

Citations
More filters
Journal ArticleDOI

Polarity in intracellular calcium signaling.

TL;DR: The nature of the Ca(2+) transport events across the basal and apical plasma membranes as well as the involvement of the endoplasmic reticulum (ER), the nucleus, the mitochondria, and the secretory granules in Ca( 2+) signal generation and termination have become much clearer in recent years.
Journal ArticleDOI

Components of astrocytic intercellular calcium signaling.

TL;DR: This review aims to outline the most recent advances regarding the active communication of astrocytes that is encoded by intracellular calcium variation.
Journal ArticleDOI

Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release

TL;DR: The results show in intact mouse oocytes that Zn2+ is essential for mII arrest and suggest that triggering meiotic exit is the sole indispensable developmental role of Ca2+ signaling in mammalian fertilization.
Journal ArticleDOI

Potassium conductance causing hyperpolarization of CA1 hippocampal neurons during hypoxia.

TL;DR: These G-protein-dependent hyperpolarizing changes produced in CA1 neurons by hypoxia are probably initiated by Ca2+ release from internal stores stimulated by enhanced glycolysis and a variable synergistic action of adenosine.
Journal ArticleDOI

Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins

TL;DR: Results obtained with exogenous Ca2+ buffers, PV closely mimicked the actions of the slow buffer EGTA, whereas CR showed important differences from the fast buffer BAPTA, and this exogenous buffer did not show the marked sensitization of IP3 action evident with CR.
References
More filters
Journal ArticleDOI

Inositol trisphosphate and calcium signalling

TL;DR: Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle.
Journal ArticleDOI

Inositol trisphosphate, a novel second messenger in cellular signal transduction.

TL;DR: Diacylglycerol operates within the plane of the membrane to activate protein kinase C, whereas inositol trisphosphate is released into the cytoplasm to function as a second messenger for mobilizing intracellular calcium.
Journal ArticleDOI

A model for receptor-regulated calcium entry

TL;DR: A capacitative model is proposed for the mechanism by which activation of surface membrane receptors causes sustained Ca2+ entry into cells from the extracellular space, which allows forCa2+ release and Ca2-mobilization to be controlled by a single messenger, inositol (1,4,5) trisphosphate.
Journal ArticleDOI

Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.

TL;DR: It is reported here that micromolar concentrations of Ins1,4,5P3 release Ca2+ from a nonmitochondrial intracellular Ca2- store in pancreatic acinar cells, and the results strongly suggest that this is the same Ca1+ store that is released by acetylcholine.
Journal ArticleDOI

Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle

TL;DR: The calcium spark is the consequence of elementary events underlying excitation-contraction coupling and provides an explanation for both spontaneous and triggered changes in the intracellular calcium concentration in the mammalian heart.
Related Papers (5)