scispace - formally typeset
Journal ArticleDOI

Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off

TLDR
In this metastability-engineering strategy, a transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA) is designed, which combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-ENTropy alloys.
Abstract
Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase) This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys

read more

Citations
More filters
Journal ArticleDOI

High-entropy alloys

TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Journal ArticleDOI

Additively manufactured hierarchical stainless steels with high strength and ductility

TL;DR: The potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications is demonstrated, with austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibiting a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels.
Journal ArticleDOI

Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes

TL;DR: It is shown that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials, which lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).
Journal ArticleDOI

Carbothermal shock synthesis of high-entropy-alloy nanoparticles

TL;DR: A general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports is presented.
Journal ArticleDOI

Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys

TL;DR: A strategy to break this trade-off by controllably introducing high-density ductile multicomponent intermetallic nanoparticles (MCINPs) in complex alloy systems is reported, which offers a paradigm to develop next-generation materials for structural applications.
References
More filters
Journal ArticleDOI

Microstructures and properties of high-entropy alloys

TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.
Journal ArticleDOI

A fracture-resistant high-entropy alloy for cryogenic applications

TL;DR: This work examined a five-element high-entropy alloy, CrMnFeCoNi, which forms a single-phase face-centered cubic solid solution, and found it to have exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness values exceeding 200 MPa·m1/2.
Journal ArticleDOI

The conflicts between strength and toughness

TL;DR: This work focuses on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture.
Journal ArticleDOI

The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy

TL;DR: In this article, an equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (fcc) crystal structure, was produced by arc melting and drop casting.
Related Papers (5)