scispace - formally typeset
Journal ArticleDOI

Evolution of Debris Disks

TLDR
In this article, a review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations, including infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases.
Abstract
Circumstellar dust exists around several hundred main sequence stars. For the youngest stars, that dust could be a remnant of the protoplanetary disk. Mostly it is inferred to be continuously replenished through collisions between planetesimals in belts analogous to the Solar System’s asteroid and Kuiper belts, or in collisions between growing protoplanets. The evolution of a star’s debris disk is indicative of the evolution of its planetesimal belts and may be influenced by planet formation processes, which can continue throughout the first gigayear as the planetary system settles to a stable configuration and planets form at large radii. Evidence for that evolution comes from infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases, as well as from images of debris disk structure. This review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Debris from terrestrial planet formation: the Moon-forming collision

TL;DR: In this paper, the authors study the evolution of debris created in the giant impacts expected during the final stages of terrestrial planet formation and find that the debris is made up of 30 per cent by mass mm-cm-sized vapour condensates and 70 per cent boulders up to 500 km.
Journal ArticleDOI

Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes

TL;DR: In this paper, a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag is presented.
Journal ArticleDOI

Disk Radii and Grain Sizes in Herschel-Resolved Debris Disks

TL;DR: In this article, the authors used a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust.
References
More filters
Journal ArticleDOI

Disk Frequencies and Lifetimes in Young Clusters

TL;DR: In this paper, the authors report the results of the first sensitive L-band survey of the intermediate-age (2.5-30 Myr) clusters NGC 2264, NGC 2362, and NGC 1960.
Journal ArticleDOI

Meteorites and the Early Solar System

TL;DR: Chondrite classification, primordial matter composition and early solar system chemical processes, discussing cosmic gas condensation and refractory element fractionation are discussed in this paper, with a focus on early solar systems chemical processes.
Journal ArticleDOI

Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets

TL;DR: This model not only naturally explains the Late Heavy Bombardment, but also reproduces the observational constraints of the outer Solar System.
Book

Protostars and Planets V

TL;DR: Protostars and Planets V as mentioned in this paper provides a detailed and up-to-date picture of star and planet formation, including the formation and early evolution of our own solar system.
Related Papers (5)