scispace - formally typeset
Journal ArticleDOI

Evolution of Debris Disks

TLDR
In this article, a review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations, including infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases.
Abstract
Circumstellar dust exists around several hundred main sequence stars. For the youngest stars, that dust could be a remnant of the protoplanetary disk. Mostly it is inferred to be continuously replenished through collisions between planetesimals in belts analogous to the Solar System’s asteroid and Kuiper belts, or in collisions between growing protoplanets. The evolution of a star’s debris disk is indicative of the evolution of its planetesimal belts and may be influenced by planet formation processes, which can continue throughout the first gigayear as the planetary system settles to a stable configuration and planets form at large radii. Evidence for that evolution comes from infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases, as well as from images of debris disk structure. This review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Protoplanetary Disks and Their Evolution

TL;DR: A review of the outer parts, beyond 1 AU, of protoplanetary disks with a focus on recent IR and (sub)millimeter results can be found in this paper.
Journal ArticleDOI

A Giant Planet Imaged in the Disk of the Young Star β Pictoris

TL;DR: It is shown that the ~10-million-year-oldβ Pictoris system hosts a massive giant planet, β Pictoris b, located 8 to 15 astronomical units from the star, which confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets.
Journal ArticleDOI

The Ages of Stars

TL;DR: A summary of the available techniques for age-dating stars and ensembles of stars, their realms of applicability, and their strengths and weaknesses can be found in this article, where the authors focus on low-mass stars.
References
More filters
Journal ArticleDOI

Other kuiper belts

TL;DR: In this article, the mass of Kuiper Belt objects (KBOs) around first-ascent red giants is estimated using IRAS data for 66 first-ASG stars.
Journal ArticleDOI

Planetary embryos and planetesimals residing in thin debris discs

TL;DR: In this paper, the authors consider constraints on the planetesimal population residing in the discs of AU Microscopii (AU Mic), β Pictoris (β Pic) and Fomalhaut taking into account their observed thicknesses and normal disc opacities.
Journal ArticleDOI

Effects of photophoresis on the evolution of transitional circumstellar disks

TL;DR: In this paper, the effect of photophoresis, acting together with stellar gravity, radiation pressure, and gas drag, on the evolution of solids in transitional circumstellar disks was examined.
Journal ArticleDOI

Dynamical zodiacal cloud models constrained by high resolution spectroscopy of the zodiacal light

TL;DR: In this article, simulated Doppler shifts of the solar Mg I Fraunhofer line produced by scattering on the solar light by asteroidal, cometary, and trans-neptunian dust particles are compared with the shifts obtained by Wisconsin H-Alpha Mapper (WHAM) spectrometer.
Related Papers (5)