scispace - formally typeset
Journal ArticleDOI

Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes

Reads0
Chats0
TLDR
In this paper, a flexible, wire-shaped, and solid-state micro-supercapacitor, which is prepared by twisting a Ni(OH)2-nanowire fiber-electrode and an ordered mesoporous carbon fiber-Electrode together with a polymer electrolyte, is demonstrated.
Abstract
Portable and multifunctional electronic devices are developing in the trend of being small, flexible, roll-up, and even wearable, which asks us to develop flexible and micro-sized energy conversion/storage devices. Here, the high performance of a flexible, wire-shaped, and solid-state micro-supercapacitor, which is prepared by twisting a Ni(OH)2-nanowire fiber-electrode and an ordered mesoporous carbon fiber-electrode together with a polymer electrolyte, is demonstrated. This micro-supercapacitor displays a high specific capacitance of 6.67 mF cm-1 (or 35.67 mF cm-2) and a high specific energy density of 0.01 mWh cm-2 (or 2.16 mWh cm-3), which are about 10-100 times higher than previous reports. Furthermore, its capacitance retention is 70% over 10 000 cycles, indicating perfect cyclic ability. Two wire-shaped micro-supercapacitors (0.6 mm in diameter, approximate to 3 cm in length) in series can successfully operate a red light-emitting-diode, indicating promising practical application. Furthermore, synchrotron radiation X-ray computed microtomography technology is employed to investigate inner structure of the micro-device, confirming its solid-state characteristic. This micro-supercapacitor may bring new design opportunities of device configuration for energy-storage devices in the future wearable electronic area.

read more

Citations
More filters
Journal ArticleDOI

A review of electrolyte materials and compositions for electrochemical supercapacitors

TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Journal ArticleDOI

Latest advances in supercapacitors: from new electrode materials to novel device designs.

TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Journal ArticleDOI

Towards flexible solid-state supercapacitors for smart and wearable electronics

TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Journal ArticleDOI

Asymmetric Supercapacitor Electrodes and Devices.

TL;DR: Asymmetric supercapacitors assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density, with the main focus on an extensive survey of the materials developed for ASC electrodes.
Journal ArticleDOI

Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives

TL;DR: Recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Journal ArticleDOI

Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density

TL;DR: In this paper, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively.
Journal ArticleDOI

Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials

TL;DR: Ni(OH)2 nanocrystals grown on graphene sheets with various degrees of oxidation are investigated as electrochemical pseudocapacitor materials for potential energy storage applications in this paper, where they exhibit a high specific capacitance of ∼1335 F/g at a charge and discharge current density of 2.8 A/g and ∼953 F/m at 45.7 A/m with excellent cycling ability.
Journal ArticleDOI

Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage

TL;DR: This work demonstrates a scalable fabrication of graphene micro-supercapacitors over large areas by direct laser writing on graphite oxide films using a standard LightScribe DVD burner, which demonstrates a power density among the highest values achieved for any supercapacitor.
Related Papers (5)