scispace - formally typeset
Open AccessJournal ArticleDOI

Genome-scale DNA methylation maps of pluripotent and differentiated cells

Reads0
Chats0
TLDR
Low-throughput reduced representation bisulphite sequencing is established as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine.
Abstract
DNA methylation is essential for normal development and has been implicated in many pathologies including cancer. Our knowledge about the genome-wide distribution of DNA methylation, how it changes during cellular differentiation and how it relates to histone methylation and other chromatin modifications in mammals remains limited. Here we report the generation and analysis of genome-scale DNA methylation profiles at nucleotide resolution in mammalian cells. Using high-throughput reduced representation bisulphite sequencing and single-molecule-based sequencing, we generated DNA methylation maps covering most CpG islands, and a representative sampling of conserved non-coding elements, transposons and other genomic features, for mouse embryonic stem cells, embryonic-stem-cell-derived and primary neural cells, and eight other primary tissues. Several key findings emerge from the data. First, DNA methylation patterns are better correlated with histone methylation patterns than with the underlying genome sequence context. Second, methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during cellular differentiation, particularly in regulatory regions outside of core promoters. Third, analysis of embryonic-stem-cell-derived and primary cells reveals that 'weak' CpG islands associated with a specific set of developmentally regulated genes undergo aberrant hypermethylation during extended proliferation in vitro, in a pattern reminiscent of that reported in some primary tumours. More generally, the results establish reduced representation bisulphite sequencing as a powerful technology for epigenetic profiling of cell populations relevant to developmental biology, cancer and regenerative medicine.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Profiling genome-wide DNA methylation.

TL;DR: This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples, and provides researchers useful guidance for the selection of a profiling method suited to specific research questions.
Book ChapterDOI

Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases

TL;DR: This work summarizes major omics approaches available in population research, and reviews integrative approaches and methodologies interrogating multiple omic layers, which enhance the gene discovery and functional analysis of human diseases.
Journal ArticleDOI

Brain function and chromatin plasticity

TL;DR: The characteristics of epigenetic control, including the potential for long-lasting, stable effects on gene expression that outlive an initial transient signal, could be of singular importance for post-mitotic neurons, which are subject to changes with short- to long- lasting influence on their activity and connectivity.
Journal ArticleDOI

Advantages of next-generation sequencing versus the microarray in epigenetic research

TL;DR: It is inevitable that massively-parallel sequencing platforms will supercede the microarray for many applications, however, there are niches for microarrays to fill and interestingly the authors may very well witness a symbiotic relationship between microarray and high-throughput sequencing in the future.
Journal ArticleDOI

Direct Lineage Conversions: Unnatural but useful?

TL;DR: Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies and develop methods for robustly and efficiently generating human cell types of interest.
References
More filters
Journal ArticleDOI

DNA methylation patterns and epigenetic memory

TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Journal ArticleDOI

A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.
Journal ArticleDOI

The epigenomics of cancer.

TL;DR: Recent advances in understanding how epigenetic alterations participate in the earliest stages of neoplasia, including stem/precursor cell contributions, are reviewed and the growing implications of these advances for strategies to control cancer are discussed.
Journal ArticleDOI

Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.

TL;DR: Insight is given into the connections between chromatin modifications and transcriptional regulatory activity and a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2) is uncovered, providing a new tool for the functional annotation of the human genome.
Related Papers (5)