scispace - formally typeset
Journal ArticleDOI

Graphene Based Electrochemical Sensors and Biosensors: A Review

TLDR
Graphene has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production).
Abstract
Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphenebased enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications

TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
Journal ArticleDOI

Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing

TL;DR: A facile strategy to prepare N-doped graphene by using nitrogen plasma treatment of graphene synthesized via a chemical method is reported, which has displayed high electrocatalytic activity for reduction of hydrogen peroxide and fast direct electron transfer kinetics for glucose oxidase.
Journal ArticleDOI

Biological and chemical sensors based on graphene materials

TL;DR: This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection and emphasizes on the underlying detection (or signal transduction) mechanisms.
Journal ArticleDOI

Chemical functionalization of graphene and its applications

TL;DR: A detailed review on the advances of chemical functionalization of graphene is presented in this article, where the surface modification of graphene oxide followed by reduction has been carried out to obtain functionalized graphene.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Journal ArticleDOI

Graphene: Status and Prospects

TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Related Papers (5)