scispace - formally typeset
Open AccessJournal ArticleDOI

Group IV graphene- and graphane-like nanosheets

Reads0
Chats0
TLDR
In this paper, the structural and electronic properties of group IV (C,SiC, Si, Ge, and Sn) graphene-like sheets in flat and buckled configurations and the respective hydrogenated or fluorinated graphane-like ones were investigated.
Abstract
We performed a first-principles investigation on the structural and electronic properties of group IV (C, SiC, Si, Ge, and Sn) graphene-like sheets in flat and buckled configurations and the respective hydrogenated or fluorinated graphane-like ones. The analysis on the energetics, associated with the formation of those structures, showed that fluorinated graphane-like sheets are very stable and should be easily synthesized in the laboratory. We also studied the changes of the properties of the graphene-like sheets as a result of hydrogenation or fluorination. The interatomic distances in those graphane-like sheets are consistent with the respective crystalline ones, a property that may facilitate integration of those sheets within three-dimensional nanodevices.

read more

Citations
More filters
Journal ArticleDOI

An atlas of two-dimensional materials

TL;DR: This Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities of atomically thin materials, as well as rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks.
Journal ArticleDOI

Recent development in 2D materials beyond graphene

TL;DR: In this article, a review highlights the recent progress of the state-of-the-art research on synthesis, characterization and isolation of single and few layer nanosheets and their assembly.
Journal ArticleDOI

Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene

TL;DR: This article reviews this emerging class of 2D elemental materials - silicene, germanene, stanene, and phosphorene--with emphasis on fundamental properties and synthesis techniques and the viability of such elemental 2D materials is highlighted.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Special points for brillouin-zone integrations

TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Related Papers (5)