scispace - formally typeset
Open AccessJournal ArticleDOI

H2S Signals Through Protein S-Sulfhydration

Reads0
Chats0
TLDR
Ex vivo endogenous H2S physiologically modifies cysteine residues in many proteins, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and actin, converting Cysteine -SH groups to -SSH groups in a process the authors call S-sulfhydration.
Abstract
Hydrogen sulfide (H2S), a messenger molecule generated by cystathionine gamma-lyase, acts as a physiologic vasorelaxant. Mechanisms whereby H2S signals have been elusive. We now show that H2S physiologically modifies cysteines in a large number of proteins by S-sulfhydration. About 10 to 25% of many liver proteins, including actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are sulfhydrated under physiological conditions. Sulfhydration augments GAPDH activity and enhances actin polymerization. Sulfhydration thus appears to be a physiologic posttranslational modification for proteins.

read more

Citations
More filters
Journal ArticleDOI

Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators.

TL;DR: In this article, the authors compare and contrast biosynthesis and metabolism of NO and H2S, their individual and shared interactions, and the growing body of evidence for their roles as endogenous epigenetic regulatory molecules.
Journal ArticleDOI

Chronic NaHS treatment decreases oxidative stress and improves endothelial function in diabetic mice

TL;DR: Data show that chronic NaHS treatment reverses diabetes-induced vascular dysfunction by restoring NO• efficacy and reducing superoxide production in the mouse aorta.
Journal ArticleDOI

Transplant tolerance is associated with reduced expression of cystathionine-γ-lyase that controls IL-12 production by dendritic cells and TH-1 immune responses

TL;DR: It is demonstrated that immune tolerance after organ allotransplantation in the rat is associated with a repressed intragraft expression of several enzymes of the trans-sulfuration pathway, including cystathionine γ-lyase (CSE) and is down-modulated in transplant tolerance, presumably participating in the maintenance of the tolerant state.
Journal ArticleDOI

Hydrogen Sulfide Biology and Its Role in Cancer

TL;DR: This review will highlight the oncogenic role of H2S in the scientific community with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders.
Journal ArticleDOI

A Life of Neurotransmitters.

TL;DR: Work in the authors' lab over fifty years has covered the breadth of neurotransmitters and related substances, focusing on the discovery and characterization of novel messenger molecules, and I can't conceptualize a more rewarding professional life.
References
More filters
Journal ArticleDOI

H2S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine γ-Lyase

TL;DR: It is shown that H2S is physiologically generated by cystathionine γ-lyase (CSE) and that genetic deletion of this enzyme in mice markedly reduces H 2S levels in the serum, heart, aorta, and other tissues.
Journal ArticleDOI

Protein S-nitrosylation: purview and parameters.

TL;DR: S-nitrosylation conveys a large part of the ubiquitous influence of nitric oxide on cellular signal transduction, and provides a mechanism for redox-based physiological regulation.
Journal ArticleDOI

The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener

TL;DR: It is demonstrated that H2S is an important endogenous vasoactive factor and the first identified gaseous opener of KATP channels in vascular SMCs and production from vascular tissues was enhanced by nitric oxide.
Journal ArticleDOI

Hydrogen sulphide and its therapeutic potential

TL;DR: The physiology and biochemistry of H2S is overviews, the effects of H 2S inhibitors or H2s donors in animal models of disease are summarized, the potential options for the therapeutic exploitation of H1S are outlined and they are outlined.
Journal ArticleDOI

Protein S-nitrosylation: a physiological signal for neuronal nitric oxide.

TL;DR: Protein S-nitrosylation is established as a physiological signalling mechanism for neuronally generated NO in mice harbouring a genomic deletion of neuronal NO synthase (nNOS).
Related Papers (5)