scispace - formally typeset
Journal ArticleDOI

Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups

TLDR
The carbon catalyst can be readily separated from the saccharide solution after reaction for reuse in the reaction without loss of activity, and the catalytic performance of the carbon catalyst is attributed to the ability of the material to adsorb beta-1,4 glucan, which does not adsorb to other solid acids.
Abstract
The hydrolysis of cellulose into saccharides using a range of solid catalysts is investigated for potential application in the environmentally benign saccharification of cellulose. Crystalline pure cellulose is not hydrolyzed by conventional strong solid Bronsted acid catalysts such as niobic acid, H-mordenite, Nafion and Amberlyst-15, whereas amorphous carbon bearing SO 3H, COOH, and OH function as an efficient catalyst for the reaction. The apparent activation energy for the hydrolysis of cellulose into glucose using the carbon catalyst is estimated to be 110 kJ mol (-1), smaller than that for sulfuric acid under optimal conditions (170 kJ mol (-1)). The carbon catalyst can be readily separated from the saccharide solution after reaction for reuse in the reaction without loss of activity. The catalytic performance of the carbon catalyst is attributed to the ability of the material to adsorb beta-1,4 glucan, which does not adsorb to other solid acids.

read more

Citations
More filters
Journal ArticleDOI

Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid

TL;DR: Hydrolysis of cellulose as the entry point of biorefinery schemes is an important process for chemical and biochemical industries based on sugars, especially for fuel ethanol production, but also offers challenges to researchers due to the structural recalcitrance.
Journal ArticleDOI

Hydrophobic Solid Acids and Their Catalytic Applications in Green and Sustainable Chemistry

TL;DR: In this paper, the authors discuss some recent advances in the preparation of novel solid acids with controllable wettability and suitable hydrophobicity and highlight their application in catalyzing various reactions such as esterification and esterization.
Journal ArticleDOI

Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural

TL;DR: In this article, a review describes the recent advances in the design and development of catalytic systems for the conversion of biomass and their constituent carbohydrates to HMF via hydrolysis, isomerization and dehydration reactions, and the upgrading of HMF towards polymer monomers, fine chemicals, fuel precursors, fuel additives, liquid fuels, and other platform chemicals via hydrogenation, oxidation, esterification, etherification, amination and aldol condensation reactions, with emphasis on how the catalysts, solvents and reaction conditions determine the reaction pathway and product
Journal ArticleDOI

Environmentally Friendly Synthesis of γ-Valerolactone by Direct Catalytic Conversion of Renewable Sources

TL;DR: In this article, the most significant achievements published in the literature from January 2011 to July 2014 and highlight critical issues and future trends are reviewed from the perspective of catalyst design, focusing on those systems enabling one-pot reaction sequences in the liquid phase at low energy expenses and combining metal and acid sites.
References
More filters
Journal ArticleDOI

Interpretation of Raman spectra of disordered and amorphous carbon

TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Book

Spectrometric identification of organic compounds

TL;DR: In this paper, a sequence of procedures for identifying an unknown organic liquid using mass, NMR, IR, and UV spectroscopy is presented, along with specific examples of unknowns and their spectra.
Journal ArticleDOI

The path forward for biofuels and biomaterials

TL;DR: The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Journal ArticleDOI

Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.

TL;DR: It is suggested that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject.
Journal ArticleDOI

Bio-ethanol--the fuel of tomorrow from the residues of today.

TL;DR: This review gives an overview of the new technologies required and the advances achieved in recent years to bring lignocellulosic ethanol towards industrial production.
Related Papers (5)