scispace - formally typeset
Journal ArticleDOI

Hypoxia signalling through mTOR and the unfolded protein response in cancer

Reads0
Chats0
TLDR
Growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.
Abstract
Hypoxia occurs in the majority of tumours, promoting angiogenesis, metastasis and resistance to therapy. Responses to hypoxia are orchestrated in part through activation of the hypoxia-inducible factor family of transcription factors (HIFs). Recently, two additional O(2)-sensitive signalling pathways have also been implicated: signalling through the mammalian target of rapamycin (mTOR) kinase and signalling through activation of the unfolded protein response (UPR). Although they are activated independently, growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.

read more

Citations
More filters
Journal ArticleDOI

Regulation of cancer cell metabolism

TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Journal ArticleDOI

Reactive oxygen species in cancer

TL;DR: The generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize are discussed, but also an outlook on their modulation in therapeutics is provided.
Journal ArticleDOI

Targeting hypoxia in cancer therapy

TL;DR: The two main approaches, namely bioreductive prodrugs and inhibitors of molecular targets upon which hypoxic cell survival depends are reviewed, and the particular challenges and opportunities these overlapping strategies present are addressed.
Journal ArticleDOI

mTOR signaling at a glance

TL;DR: The mammalian target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation and survival.
Journal ArticleDOI

Hypoxia inducible factors and the response to hypoxic stress

TL;DR: In mammals, the primary transcriptional response to hypoxic stress is mediated by the hypoxia-inducible factors, and the HIFα subunits are intricately responsive to numerous other factors, including factor-inhibiting HIF1α, sirtuins, and metabolites.
References
More filters
Journal ArticleDOI

Targeting HIF-1 for cancer therapy

TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Journal ArticleDOI

Signal integration in the endoplasmic reticulum unfolded protein response

TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Journal ArticleDOI

Upstream and downstream of mTOR

TL;DR: Both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis are described.
Journal ArticleDOI

Autophagy: process and function

TL;DR: In this review, the process of autophagy is summarized, and the role of autophileagy is discussed in a process-based manner.
Journal ArticleDOI

The biology of cancer: metabolic reprogramming fuels cell growth and proliferation

TL;DR: This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types and regulates regulation of these fluxes by cellular mediators of signal transduction and gene expression.
Related Papers (5)