scispace - formally typeset
Open AccessJournal ArticleDOI

Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.

TLDR
The estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ERα or ERβ protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ERβ complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid are investigated.
Abstract
The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 >> zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 >> genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

TL;DR: The evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology is presented.
Journal ArticleDOI

Dietary polyphenols and the prevention of diseases

TL;DR: Experimental studies on animals or cultured human cell lines support a role of polyphenols in the prevention of cardiovascular diseases, cancers, neurodegenerative diseases, diabetes, or osteoporosis, but no clear associations have been found between cancer risk and polyphenol consumption.
Journal ArticleDOI

Human exposure to bisphenol A (BPA).

TL;DR: The reported levels of BPA in human fluids are higher than the BPA concentrations reported to stimulate molecular endpoints in vitro and appear to be within an order of magnitude of the levels needed to induce effects in animal models.
Journal ArticleDOI

Mechanisms of Estrogen Action

TL;DR: The role of estrogen receptors in physiology and pathology has been investigated in the past decade and it was found that there was not one but two distinct and functional estrogen receptors, now called ERα and ERβ.
Journal ArticleDOI

The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration

TL;DR: These observations urge further study of the onset of puberty as a possible sensitive and early marker of the interactions between environmental conditions and genetic susceptibility that can influence physiological and pathological processes.
References
More filters
Journal ArticleDOI

Cloning of a novel receptor expressed in rat prostate and ovary.

TL;DR: It is concluded that clone 29 cDNA encodes a novel rat ER, which is suggested be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Journal ArticleDOI

Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta

TL;DR: The messenger RNA expression of both ER subtypes in rat tissues by RT-PCR is investigated and the ligand binding specificity of the ER sub types is compared, revealing a single binding component for 16β-estradiol with high affinity.
Journal ArticleDOI

Molecular basis of agonism and antagonism in the oestrogen receptor.

TL;DR: The crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17β-oestradiol, and the selective antagonist raloxifene provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties.
Journal ArticleDOI

Molecular mechanisms of action of steroid/thyroid receptor superfamily members

TL;DR: The role of Ligand in RECEPTOR TRANSFORMATION and ACTIVATION is studied, as well as the role of serotonin, which plays a role in both transformation and inhibition.
Journal ArticleDOI

Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system.

TL;DR: Comparing the distribution of the classical and novel forms of ER mRNA‐expressing neurons in the central nervous system (CNS) of the rat with in situ hybridization histochemistry provides evidence that the region‐specific expression of ER‐α, ER‐β, or both may be important in determining the physiological responses of neuronal populations to estrogen action.
Related Papers (5)