scispace - formally typeset
Journal ArticleDOI

Many roads to maturity: microRNA biogenesis pathways and their regulation

Reads0
Chats0
TLDR
Recent advances in knowledge of the microRNA biosynthesis pathways are reviewed and their impact on post-transcriptional microRNA regulation during tumour development is discussed.
Abstract
MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development and cancer. Although their mode of action has attracted great attention, the principles governing their expression and activity are only beginning to emerge. Recent studies have introduced a paradigm shift in our understanding of the microRNA biogenesis pathway, which was previously believed to be universal to all microRNAs. Maturation steps specific to individual microRNAs have been uncovered, and these offer a plethora of regulatory options after transcription with multiple proteins affecting microRNA processing efficiency. Here we review the recent advances in knowledge of the microRNA biosynthesis pathways and discuss their impact on post-transcriptional microRNA regulation during tumour development.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The widespread regulation of microRNA biogenesis, function and decay.

TL;DR: This work has shown that the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein–protein and protein–RNA interactions has an important role in the context-specific functions of miRNAs.
Journal ArticleDOI

Regulation of mRNA Translation and Stability by microRNAs

TL;DR: In this article, the authors describe principles of miRNA-mRNA interactions and proteins that interact with miRNAs and function in miRNA mediated repression, and discuss the multiple, often contradictory, mechanisms that miRNA have been reported to use, which cause translational repression and mRNA decay.
Journal ArticleDOI

miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.

TL;DR: For example, miRDeep2 as mentioned in this paper identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples.
Journal ArticleDOI

A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

TL;DR: It is found that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role, and this analysis extended to other cancer-related genes that possess pseudogenes, and revealed a non-coding function for mRNAs.
Journal ArticleDOI

The hallmarks of cancer: a long non-coding RNA point of view.

TL;DR: Here, the cellular processes influenced by long ncRNAs to the hallmarks of cancer are linked and therefore, an ncRNA point-of-view on tumor biology is provided.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14

TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.
Journal ArticleDOI

Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells

TL;DR: This article showed that OCT4, SOX2, NANOG, and LIN28 factors are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells.
Journal ArticleDOI

MicroRNA expression profiles classify human cancers

TL;DR: A new, bead-based flow cytometric miRNA expression profiling method is used to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers, and finds the miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours.
Journal Article

MicroRNA signatures in human cancers

TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Related Papers (5)