scispace - formally typeset
Journal ArticleDOI

Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.

TLDR
Multiwalled carbon nanotubes with a mean fracture strength >100 GPa are reported, which exceeds earlier observations by a factor of approximately three and are in excellent agreement with quantum-mechanical estimates for nanot tubes containing only an occasional vacancy defect, and are approximately 80% of the values expected for defect-free tubes.
Abstract
The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are ∼80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells. The mechanical properties of carbon nanotubes rarely match the values predicted by theory owing to a combination of artefacts introduced during sample preparation and inadequate measurements. However, by avoiding chemical treatments and using high-resolution imaging, it is possible to obtain values of the mean fracture strength that exceed previous values by approximately a factor of three.

read more

Citations
More filters
Journal ArticleDOI

Carbon Nanotubes: Present and Future Commercial Applications

TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Journal ArticleDOI

Ion and electron irradiation-induced effects in nanostructured materials

TL;DR: In this article, the authors review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes.
Journal ArticleDOI

High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries

TL;DR: It is shown that the elastic stiffness of CVD-graphene is identical to that of pristine graphene if postprocessing steps avoid damage or rippling, and its strength is only slightly reduced despite the existence of grain boundaries.
Journal ArticleDOI

Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials

TL;DR: In contrast to synthetic materials, evolutionary developments in biology have resulted in materials with remarkable structural properties, made out of relatively weak constituents, arranged in complex hierarchical patterns as discussed by the authors, which can exhibit superior levels of strength and toughness.
Journal ArticleDOI

Few layer graphene to reduce wear and friction on sliding steel surfaces

TL;DR: In this article, solution-processed graphene layers were used to reduce friction and wear on sliding steel surfaces in air (relative humidity, 30%), and small amounts of graphene-containing ethanol solution decreased wear by almost 4 orders of magnitude and friction coefficients by a factor of 6.
References
More filters
Journal ArticleDOI

Optimization of parameters for semiempirical methods I. Method

TL;DR: In this paper, a new method for obtaining optimized parameters for semi-empirical methods has been developed and applied to the modified neglect of diatomic overlap (MNDO) method.
Journal ArticleDOI

Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load

TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Journal ArticleDOI

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties

TL;DR: In this paper, an extension of the tight-binding (TB) approach to improve total energies, forces, and transferability is presented. The method is based on a second-order expansion of the Kohn-Sham total energy in density-functional theory (DFT) with respect to charge density fluctuations.
Journal ArticleDOI

A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons

TL;DR: Brenner as mentioned in this paper presented a second generation potential energy function for solid carbon and hydrocarbon molecules that is based on an empirical bond order formalism, allowing for covalent bond breaking and forming with associated changes in atomic hybridization within a classical potential, producing a powerful method for modelling complex chemistry in large many-atom systems.
Journal ArticleDOI

Theoretical studies of icosahedral C60 and some related species

TL;DR: There are many stable C60 structures other than the icosahedral one proposed by Kroto, Heath, O'Brien, Curl and Smalley as discussed by the authors, and the observed C60 mass peak is likely to arise from a mixture of isomers.
Related Papers (5)