scispace - formally typeset
Open AccessJournal ArticleDOI

Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2

Reads0
Chats0
TLDR
In this article, it is shown that it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS2 on chemically vapor deposited material.
Abstract
Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS2. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS2 on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications

TL;DR: In this paper, the recent progress in 2D materials beyond graphene and includes mainly transition metal dichalcogenides (TMDs) (e.g., MoS2, WS2, MoSe2, and WSe2).
Journal ArticleDOI

Electrical contacts to two-dimensional semiconductors

TL;DR: A comprehensive treatment of the physics of such interfaces at the contact region is presented and recent progress towards realizing optimal contacts for two-dimensional materials is discussed.
Journal ArticleDOI

Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures

TL;DR: This review of the challenges in the CVD growth of 2D materials highlights recent advances in the controlled growth of single crystal 2Dmaterials, with an emphasis on semiconducting transition metal dichalcogenides.
References
More filters
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Journal ArticleDOI

Photoluminescence from Chemically Exfoliated MoS2

TL;DR: Above an annealing temperature of 300 °C, chemically exfoliated MoS2 exhibit prominent band gap photoluminescence, similar to mechanically exfoliate monolayers, indicating that their semiconducting properties are largely restored.
Journal ArticleDOI

The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties

J.A. Wilson, +1 more
- 01 May 1969 - 
TL;DR: The transition metal dichalcogenides are about 60 in number as discussed by the authors, and two-thirds of these assume layer structures and can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions.
Journal ArticleDOI

Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition

TL;DR: Optical, microscopic and electrical measurements suggest that the synthetic process leads to the growth of MoS(2) monolayer, and TEM images verify that the synthesized MoS (2) sheets are highly crystalline.
Related Papers (5)