scispace - formally typeset
Open AccessJournal ArticleDOI

Microfluidics for flow cytometric analysis of cells and particles.

TLDR
This review describes recent developments in microfabricated flow cytometers and related microfluidic devices that can detect, analyze, and sort cells or particles and presents various efforts that take advantage of novel microscale flow phenomena and microFabrication techniques to build microfluidity cell analysis systems.
Abstract
This review describes recent developments in microfabricated flow cytometers and related microfluidic devices that can detect, analyze, and sort cells or particles. The high-speed analytical capabilities of flow cytometry depend on the cooperative use of microfluidics, optics and electronics. Along with the improvement of other components, replacement of conventional glass capillary-based fluidics with microfluidic sample handling systems operating in microfabricated structures enables volume- and power-efficient, inexpensive and flexible analysis of particulate samples. In this review, we present various efforts that take advantage of novel microscale flow phenomena and microfabrication techniques to build microfluidic cell analysis systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The origins and the future of microfluidics

TL;DR: The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field that has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology.
Journal ArticleDOI

Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications

TL;DR: This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays and attempts to provide a selection scheme based on key requirements of different applications and market segments.
Journal ArticleDOI

Lab-on-a-chip devices for global health: Past studies and future opportunities

TL;DR: This review identifies diseases that are most in need of new health technologies, special design criteria for LOC devices to be deployed in a variety of resource-poor settings, and review past research into LOC devices for global health.
Journal ArticleDOI

Shape transitions of fluid vesicles and red blood cells in capillary flows

TL;DR: The dynamics of fluid vesicles and red blood cells in cylindrical capillary flow is studied by using a three-dimensional mesoscopic simulation approach, and slipper-like shapes of the RBC model are observed around the transition velocities.
Journal ArticleDOI

Microfluidics technology for manipulation and analysis of biological cells

TL;DR: This article provides an in-depth review on the applications of microfluidic devices for cell-based assays in recent years, including micro cytometer, micro fluidic chemical cytometry, biochemical sensing chip, and whole cell sensing chip.
References
More filters
Journal ArticleDOI

Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)

TL;DR: A procedure that makes it possible to design and fabricate microfluidic systems in an elastomeric material poly(dimethylsiloxane) (PDMS) in less than 24 h by fabricating a miniaturized capillary electrophoresis system is described.
Journal ArticleDOI

Monolithic microfabricated valves and pumps by multilayer soft lithography

TL;DR: An extension to the soft lithography paradigm, multilayersoft lithography, with which devices consisting of multiple layers may be fabricated from soft materials is described, to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer.
Journal ArticleDOI

Engineering flows in small devices

TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Journal ArticleDOI

Soft Lithography in Biology and Biochemistry

TL;DR: Soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and topattern and manipulate cells.
Book

Fundamentals of microfabrication

TL;DR: The second edition of the Fundamentals of Microfabrication as discussed by the authors provides an in-depth coverage of the science of miniaturization, its methods, and materials, from the fundamentals of lithography through bonding and packaging to quantum structures and molecular engineering.
Related Papers (5)