scispace - formally typeset
Journal ArticleDOI

Molecular characterization of a peripheral receptor for cannabinoids

Sean Munro, +2 more
- 02 Sep 1993 - 
- Vol. 365, Iss: 6441, pp 61-65
TLDR
The cloning of a receptor for cannabinoids is reported that is not expressed in the brain but rather in macrophages in the marginal zone of spleen, which helps clarify the non-psychoactive effects of cannabinoids.
Abstract
THE major active ingredient of marijuana, Δ9-tetrahydrocannabi-nol (Δ9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and Δ9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of vomiting1. The clinical application of cannabinoids has, however, been limited by their psychoactive effects, and this has led to interest in the biochemical bases of their action. Progress stemmed initially from the synthesis of potent derivatives of δ9-THC4,5, and more recently from the cloning of a gene encoding a G-protein-coupled receptor for cannabinoids6. This receptor is expressed in the brain but not in the periphery, except for a low level in testes. It has been proposed that the non-psychoactive effects of cannabinoids are either mediated centrally or through direct interaction with other, non-receptor proteins1,7,8. Here we report the cloning of a receptor for cannabinoids that is not expressed in the brain but rather in macrophages in the marginal zone of spleen.

read more

Citations
More filters
Journal ArticleDOI

International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors

TL;DR: It is considered premature to rename cannabinoid receptors after an endogenous agonist as is recommended by the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification, because pharmacological evidence for the existence of additional types of cannabinoid receptor is emerging and other kinds of supporting evidence are still lacking.
Journal ArticleDOI

The Endocannabinoid System as an Emerging Target of Pharmacotherapy

TL;DR: A comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy is provided.
Journal ArticleDOI

The molecular logic of endocannabinoid signalling

TL;DR: The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis).
Journal ArticleDOI

SR141716A, a potent and selective antagonist of the brain cannabinoid receptor

TL;DR: SR141716A is the first selective and orally active antagonist of the brain cannabinoid receptor and should prove to be a powerful tool for investigating the in vivo functions of the anandamide/cannabinoid system.
References
More filters
Journal ArticleDOI

Isolation and structure of a brain constituent that binds to the cannabinoid receptor

TL;DR: In this article, an arachidonylethanthanolamide (anandamide) was identified in a screen for endogenous ligands for the cannabinoid receptor and its structure was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and confirmed by synthesis.
Journal ArticleDOI

Structure of a cannabinoid receptor and functional expression of the cloned cDNA

TL;DR: The cloning and expression of a complementary DNA that encodes a G protein-coupled receptor that is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana are suggested.
Journal ArticleDOI

Cannabinoid receptor localization in brain

TL;DR: The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Journal ArticleDOI

The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression

TL;DR: The HL-60 cell line, derived from a single patient with acute promyelocytic leukemia, provides a unique in vitro model system for studying the cellular and molecular events involved in the proliferation and differentiation of normal and leukemic cells of the granulocyte/monocyte/macrophage lineage.
Journal ArticleDOI

The probable arrangement of the helices in G protein-coupled receptors.

TL;DR: The structural constraints for the receptors are used to allocate particular helices to the peaks in the recently published projection map of rhodopsin and to propose a tentative three‐dimensional arrangement of the helices in G protein‐coupled receptors.
Related Papers (5)