scispace - formally typeset
Open AccessJournal ArticleDOI

Nanoantennas for visible and infrared radiation.

Reads0
Chats0
TLDR
The role of plasmonic resonances on the performance of nanoantennas and the influence of geometrical parameters imposed by nanofabrication are discussed.
Abstract
Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-of-states engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of metallic optical antennas based on the background of both well-developed radiowave antenna engineering and plasmonics. In particular, we discuss the role of plasmonic resonances on the performance of nanoantennas and address the influence of geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.

read more

Citations
More filters
Journal ArticleDOI

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Journal ArticleDOI

Surface plasmon resonance in gold nanoparticles: a review.

TL;DR: The general overview of the field and the background for appropriate modelling of the physical phenomena are provided and the current state of the art and most recent applications of plasmon resonance in Au NPs are reported.
Journal ArticleDOI

Strong coupling between surface plasmon polaritons and emitters: a review

TL;DR: This review looks at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots.
Journal ArticleDOI

Progress in optics

TL;DR: The last volume of the Progress in Optics series as discussed by the authors contains seven chapters on widely diverging topics, written by well-known authorities in their fields, including laser selective photophysics and photochemistry, laser phase profile generation, laser beamforming, and laser laser light emission from high-current surface spark discharges.
Journal ArticleDOI

All-dielectric optical nanoantennas

TL;DR: Control of light at the nanoscale is demanding for future successful on-chip integration and most optical nanoantennas consist of plasmonic nanoparticles due to their ability to capture and concentrate visible light at subwavelength dimensions.
References
More filters
Journal ArticleDOI

Gold nanoparticles in delivery applications

TL;DR: Gold nanoparticles provide non-toxic carriers for drug and gene delivery applications and their interaction with thiols is an effective and selective means of controlled intracellular release.
Journal ArticleDOI

Directed Assembly of One-Dimensional Nanostructures into Functional Networks

TL;DR: It is shown that nanowires can be assembled into parallel arrays with control of the average separation and, by combining fluidic alignment with surface-patterning techniques, that it is also possible to control periodicity.
Journal ArticleDOI

Long-distance quantum communication with atomic ensembles and linear optics

TL;DR: In this article, the authors describe a scheme that allows to implement robust quantum communication over long lossy channels, which involves laser manipulation of atomic ensembles, beam splitters and single-photon detectors with moderate efficiencies.
Journal ArticleDOI

Plasmon-Induced Transparency in Metamaterials

TL;DR: A plasmonic "molecule" consisting of a radiative element coupled with a subradiant (dark) element is theoretically investigated and shows electromagnetic response that closely resembles the electromagnetically induced transparency in an atomic system.
PatentDOI

Plasmon lasers at deep subwavelength scale

TL;DR: Hybrid plasmonic waveguides as discussed by the authors employ a high-gain semiconductor nanostructure functioning as a gain medium that is separated from a metal substrate surface by a nanoscale thickness thick low-index gap.
Related Papers (5)