scispace - formally typeset
Open AccessJournal ArticleDOI

Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins.

TLDR
It is shown that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response, and that the NDVs could be used to screen proteins expressed from plasmids for the ability to counteract the host cellIFN response.
Abstract
We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-α/β) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-α/β system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.

read more

Citations
More filters
Posted ContentDOI

Exploring the structural basis to develop efficient multi-epitope vaccines displaying interaction with HLA and TAP and TLR3 molecules to prevent NIPAH infection, a global threat to human health

TL;DR: In this article, two multi-epitope vaccines (MEVs) composed of 33 cytotoxic T lymphocyte (CTL) epitopes and 38 helper T lymphocytes (HTL) were designed for NiV infection.
Dissertation

Elucidation of Nipah virus pathogenesis in the guinea pig by means of molecular, immunohistochemical, and in situ hybridization methodologies

TL;DR: Data presented here, shows that NiV is able to suppress the apoptosis cascade in lymphoid organs early in the infection, as shown in other Paramyxoviruses.
Journal ArticleDOI

Newcastle disease virus in poultry with an interface as a human vector

TL;DR: In this article , a review of the Newcastle disease virus, immune mechanism, prevention and control strategies adapted for the Newcastle disease in poultry, and its beneficial use as a candidate vector for human vaccines and cancer therapy is presented.
References
More filters
Journal ArticleDOI

Efficient selection for high-expression transfectants with a novel eukaryotic vector

TL;DR: The results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification.
Journal ArticleDOI

Nipah Virus: A Recently Emergent Deadly Paramyxovirus

TL;DR: Electron microscopic, serologic, and genetic studies indicate that the Nipah virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus, and it is suggested that these two viruses are representative of a new genus within the familyparamyxviridae.
Journal ArticleDOI

Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient Systems

TL;DR: In this paper, a viable transfectant influenza A virus (delNS1) which lacks the NS1 gene has been generated through the use of reverse genetics, and it has been shown that the NS 1 protein plays a crucial role in inhibiting interferon-mediated antiviral responses of the host.
Related Papers (5)